- 最近の調査によると、ヨーロッパはエネルギー関連のイノベーションにおいてトップクラスの地域の一つです。
- 低炭素エネルギーへの移行を推進する主な原動力の一つは電気自動車です。
Data Bridge Market Researchの分析によると、電気自動車充電ステーション市場は2021年に69億7,000万米ドルと評価され、2029年には1,675億2,000万米ドルに達し、2022年から2029年の予測期間中に48.80%のCAGRを記録すると予想されています。 電気自動車の人気と使用の増加により、充電インフラ開発の必要性が浮き彫りになっています。たとえば、中国、米国、ドイツは、電気自動車(EV)充電インフラと、より高速で効率的な充電技術の研究開発に多額の費用を費やしています。ABB(スイス)、Shell plc(英国)、ChargePoint(米国)、Tesla(米国)、BYD(中国)、bp Chargemaster(英国)、Webasto Thermo & Comfort(ドイツ)、Schneider Electric(フランス)、Blink Charging Co.(米国)、Groupe Renault(フランス)、Phihong USA Corp.(米国)など、多くの企業がこの市場で活動している主要企業です。
この研究の詳細については、以下をご覧ください。 https://www.databridgemarketresearch.com/jp/reports/global-electric-vehicle-charging-stations-market
気候災害によって引き起こされる問題を解決するために不可欠なステップの 1 つは、低炭素エネルギー (LCE) への移行です。排出量が削減されず、よりクリーンなエネルギーの使用が拡大されなければ、パリ気候協定の温度制限を超える可能性があります。欧州特許庁 (EPO) と国際エネルギー機関 (IEA) が発表した、より環境に優しいエネルギーへの切り替えを支援するために必要な技術の開発に関する 2 番目の調査によると、これが事実です。EPO と IEA は、国際特許データベースを徹底的に調べてイノベーションのパターンを見つけ、複数の庁に特許が申請されたケース (国際特許ファミリーと呼ばれる) を集計し、これまでの進捗状況 (IPF) を測定しました。この論文によると、「この特許データは、経済に確実に影響を与える技術進歩の早期指標を提供し、イノベーションがエネルギー移行をどのように促進しているかを示すことができます。」
図1: 低炭素エネルギーの世界的成長
出典: 欧州特許庁
2014年から2016年にかけて、グリーンエネルギーに関するIPFの拡大は鈍化しました。しかし、EPO/IEAの報告書によると、再び増加傾向にあります。さらに、LCE関連の特許の増加は、化石燃料の使用量の減少と一致しています。
人工知能 (AI) は、あらゆる業界でそうであるように、エネルギーおよび公共事業業界に革命をもたらしています。電力が必要とされるときに、必要とされる場所に、無駄を最小限に抑えて供給されるようにするために、需要を予測し、リソースの配分を制御するために AI が使用されます。再生可能エネルギーは長期保存に適さないことが多く、生産されたらできるだけ早く使用する必要があるため、これは再生可能エネルギー部門にとって非常に重要です。世界経済フォーラムによると、AI は再生可能エネルギーへの世界的な移行に不可欠です。需要と供給の予測がより正確になることで、効率が向上します。
分散型の発電・配電モデルも、集中型のモデルに取って代わりつつある。こうしたモデルでは、より多くの電力が地域限定の小規模な電力網(太陽光発電所など)によって生産され、こうしたネットワークの統合を調整するには高度な AI アルゴリズムが必要となる。計画では、電力インフラと、人や物が電気を使用する建物の間に「インテリジェントな調整層」を構築することになっている。
2022年には、AIを新たな方法で活用するスタートアップ企業から、さらなるイノベーションが生まれることが期待できます。一例として、ドイツのLikewattは、二酸化炭素排出量と電力消費量を推定するサービス「Optiwize」を開発しました。このサービスは、消費者が電力消費の影響をリアルタイムで監視し、エネルギー供給についてより情報に基づいた選択を行えるように支援します。再生可能エネルギーの生産効率を高めるために、他の企業は予知保全の技術を開発しています。世界のエネルギーシステムの脱炭素化に向けた取り組みの結果、電力、輸送、産業、建設部門間の相互作用が高まり、より統合され電化されたエネルギーシステムが生まれています。電力部門の高度な分散化も、エネルギー供給の脱炭素化に向けた取り組みによってもたらされています。ますます複雑化するこのシステムを管理し、温室効果ガスの排出量を最小限に抑えるために最適化するには、消費者を含むすべての部門関係者からのかなり高いレベルの協力と適応性が必要になります。
AI は、変動する再生可能エネルギー資源を最適化して電力網に効果的に統合することから、積極的かつ自律的な電力配電システムのサポート、需要側の柔軟性のための新しい収益源の開拓に至るまで、幅広い用途が考えられ、信頼性が高くコストが最も低いエネルギー転換をサポートし、加速させる大きな可能性を秘めています。最新の持続可能なエネルギーと貯蔵技術の基盤となる高性能材料の探求は、AI の使用によって大きな恩恵を受ける可能性があります。しかし、その可能性にもかかわらず、AI はエネルギー分野で時折使用されており、主に積極的な資産保守の実験プログラムで使用されています。AI は効果的ですが、現在認識されているよりもはるかに高い潜在能力を世界中のエネルギー転換に持っています。以下は、AI が幅広い用途を通じてエネルギー分野にどのような影響を与えるかについての議論です。
図2: エネルギー業界におけるAIの主な応用
- スマートグリッド- 「スマート」になるために、グリッドはセンサー、データ分析ツール、エネルギー貯蔵システム、エネルギー管理プラットフォーム、およびその他のエネルギー技術に接続できるようになりました。エネルギープロバイダーは、スマートグリッドを使用して、すべてのグリッドデバイスからエネルギー消費に関するデータを収集し、クライアント向けのエネルギー効率プロジェクトを作成できます。さらに、エネルギー会社によるエネルギーの使用とフローをほぼリアルタイムで監視できます。次に、ピーク時にエネルギーを遮断する可能性のある自動需要応答システムを使用して、エネルギー会社はエネルギーの使用を最小限に抑えることができます。その結果、家庭とエネルギープロバイダーの両方がエネルギーを節約できます。マイクログリッドは、メイングリッドから独立して機能できる小規模な電力グリッドです。マイクログリッド制御システムでは、AIと機械学習を使用してエネルギーの使用を最適化し、エネルギーフローを制御します。緊急時にエネルギーセキュリティを提供でき、従来のエネルギーネットワークよりも再生可能エネルギー源をグリッドに統合するのが簡単になるため、マイクログリッドの人気が高まっています。
- グリッドセキュリティと管理 - AI は、建物、企業、蓄電池、再生可能エネルギー源、マイクログリッド、および主送電網の内部およびそれらの間のエネルギー フローを管理して、エネルギー システムを最適化するために使用されます。これにより、エネルギーの無駄が減り、消費者のエネルギー使用に対する意識が高まります。風力や太陽光などの断続的な再生可能エネルギー源の人気が高まっていますが、その結果、これらのエネルギー源は必要なときに常に利用できるとは限りません。エネルギー グリッドは、エネルギーが生成されるとリアルタイムで管理する必要があるため、これは課題となります。エネルギー企業は、AI と機械学習の助けを借りて、再生可能な電力がいつ利用可能になるかを予測し、それに応じてエネルギー グリッドを管理できます。ロボットは、エネルギー設備、グリッドの維持、エネルギーの生産と消費の追跡にも使用されます。パイプライン、風力タービン、およびその他のエネルギー インフラストラクチャを修理するために、ロボットを利用できます。エネルギー企業は、これらのプロセスを自動化することで、効率をさらに高め、コストを削減できます。電力グリッドなどの高度なシステムは、ハッカーに対して無防備です。サイバー攻撃が発生する前に阻止することで、AI と機械学習は電力インフラストラクチャのセキュリティを強化できます。これを実現するために、データ分析を利用して、サイバー攻撃の兆候となる可能性のあるエネルギーデータの傾向を見つけます。サイバー攻撃が検出されると、AI と機械学習を使用して対応できます。
- 電力盗難検知 - 電力盗難と詐欺は、エネルギーおよび公共事業部門に年間最大 960 億ドルの損害を与えており、米国だけで最大 60 億ドルの損失が発生しています。電力網から不法にエネルギーを引き出すことは、電力盗難として知られています。エネルギー データまたはエネルギー使用量の故意の歪曲は、エネルギー詐欺として知られています。これらの異常は、AI と機械学習を使用して、エネルギー会社によって自動的に検出され、解決のためにフラグが付けられます。エネルギー会社は、これを実行することで、リソースを保護し、エネルギーの無駄を削減し、経済的節約を実現できます。
- 生産性の向上と向上 - エネルギー部門も、生産量を増やすために AI と機械学習を利用しています。たとえば、石油・ガス企業は機械学習アルゴリズムを使用して油井の設置場所を最適化し、生産量を増やしています。これらの企業は、地震調査やその他の情報源から得たデータを分析することで、石油やガスをより効率的に掘削する場所を決定できます。これによりエネルギー効率が向上し、よりクリーンで効果的なエネルギー システムが実現し、エネルギー プロバイダーにとって管理が簡単になります。
- エネルギー貯蔵と予測分析 - 2030 年までに、エネルギー貯蔵の市場は 20 倍に拡大すると予想されています。スマート エネルギー貯蔵技術をエネルギー グリッドに組み込むことで、エネルギー管理の有効性を高めることができます。電力会社は、エネルギー貯蔵を使用して仮想発電所を構築することで、現在のエネルギー供給が不十分な場合でも、必要なときにエネルギーを供給できるようになりました。これにより、エネルギー会社が新しい発電所を建設する必要性が軽減されます。エネルギー需要の将来の変化は、予測分析を使用して予測できます。その後、将来の計画を立ててエネルギー需要を供給するために、適切なインフラストラクチャを構築できます。エネルギー会社は、予測分析を使用して、機械や機器が故障する可能性が最も高い時期を予測することもできます。これは、予期しない停電を防ぐのに役立つだけでなく、高価で重要なエネルギー資産の交換に備え、予期しないメンテナンス作業を回避できるようにすることで、企業のコスト削減にも役立ちます。
- 顧客エンゲージメント エネルギー業界では、顧客とのやり取りに AI と機械学習を取り入れ始めています。エネルギー企業は、AI と機械学習を活用して、顧客の要件に合わせた情報を提供できます。これには、顧客データを分析してエネルギー使用量を把握し、エネルギー消費量を減らすために使用習慣を変える方法に関する情報を顧客に提供することが含まれます。
- エネルギー取引- エネルギーはすぐに供給されなければならないため、エネルギー取引は他の商品とは異なります。エネルギートレーダーは、このため課題に直面していますが、エネルギー市場の流動性が高まっているため、チャンスもあります。エネルギー需要を予測し、トレーダーがリアルタイムの価格データにアクセスできるようにすることで、AIと機械学習を利用してエネルギー取引市場の効率を向上させることができます。エネルギートレーダーは、この情報を使用して、エネルギーをいつ購入および販売するかについて、より情報に基づいた選択を行うことができます。エネルギー購入者と販売者間の金融契約である電力購入契約(PPA)は、ブロックチェーン技術を使用して開発されました。これらの契約は、取引を高速化し、従来のPPAプラットフォームよりも使用コストが低く、非常に安全なプラットフォームに基づいているため、ブロックチェーン技術のおかげでより効果的です。
再生可能エネルギーコネクタ市場は、2021年から2028年の予測期間に6.10%の成長率で成長すると予想されています。再生可能エネルギーコネクタ市場に関するデータブリッジ市場調査レポートは、再生可能エネルギー源の採用拡大などの要因に関する分析と洞察を提供します。高い設置コストと天然資源の枯渇は、上記の予測期間中に再生可能エネルギーコネクタの市場抑制要因となっています。地球温暖化の進行と人口の急増は、上記の予測期間中の再生可能エネルギーコネクタ市場の成長における最大の課題となるでしょう。再生可能エネルギーコネクタ市場は、タイプ、エネルギー源、用途、エンドユーザーに基づいてセグメント化されています。アジア太平洋地域は、地域でのエネルギー改革の増加と流通チャネル数の増加により、再生可能エネルギーコネクタ市場を支配しますが、北米は、有利な政策の普及と再生可能エネルギーポートフォリオ基準の増加により、2021年から2028年の予測期間中に成長することが見込まれます。
この研究の詳細については、以下をご覧ください。 https://www.databridgemarketresearch.com/jp/reports/global-renewable-energy-connector-market
AI はエネルギー転換のペースをどのように加速させるのでしょうか?
新しい IPCC 評価では、壊滅的な長期的気候影響を防ぐために、さらなる対策が緊急に必要であると明確に述べられています。化石燃料は依然として世界のエネルギーの 80% 以上を供給しているため、あらゆる取り組みはエネルギー部門に集中する必要があります。幸いなことに、エネルギー システムはすでに変化しており、再生可能エネルギーの生産はコストの低下と投資家の関心の高まりにより急速に拡大しています。しかし、残された時間はあまりなく、エネルギー システム全体を脱炭素化するための規模とコストは依然として膨大です。エネルギー業界の移行努力の大部分は、これまでのところ、ハードウェア、つまり従来の炭素集約型システムに取って代わる新しい低炭素インフラストラクチャに集中しています。この移行のためのもう 1 つの重要な手段である次世代デジタル技術、特に人工知能は、ほとんど注目されておらず、資金もほとんど投入されていません (AI)。これらの強力な技術は、新しいハードウェア ソリューションよりも迅速に導入され、エネルギー移行を加速させる可能性があります。3 つの主要なトレンドが、AI がエネルギー移行を加速させる可能性を推進しています。
- 電力、輸送、重工業、建築などのエネルギー集約型産業では、迅速な CO2 排出量削減を求める世論の高まりにより、歴史的な脱炭素化プロセスが始まったばかりです。これらの変革は、その範囲が広大です。ブルームバーグ NEF によると、2050 年までにネットゼロ排出量を達成するには、エネルギー部門だけで 92 兆ドルから 173 兆ドルのインフラ投資が必要になります。したがって、クリーン エネルギーと低炭素産業の柔軟性、効率性、または容量がわずかに向上するだけでも、数兆ドルの価値と節約がもたらされる可能性があります。
- 電力がより多くの産業や用途を支えるようになるにつれ、電力部門は世界のエネルギー供給の主要な柱へと進化しています。電力網を安全かつ確実に管理できるようにするには、再生可能エネルギーの導入を増やすことで、散発的なエネルギー源(太陽光や風力など)から供給される電力が増えることになり、予測、調整、柔軟な消費の必要性が高まります。
- 分散型発電、分散型ストレージ、および需要応答機能の向上の急速な拡大は、低炭素エネルギー システムへの移行によって推進されています。これらの機能は、よりネットワーク化されたトランザクション型の電力網を通じて調整および統合される必要があります。
エネルギーシステムとエネルギー集約型セクターは、これらのトレンドを乗り切る上で、戦略的および運用上の大きなハードルに直面しています。AI は、エネルギーシステムの関係者がデータのパターンと洞察を特定し、経験から学び、時間の経過とともにシステムのパフォーマンスを改善し、エネルギーの生成、伝送、使用全体にわたるインテリジェントな調整レイヤーを確立することで、複雑で多変量な状況の潜在的な結果を予測およびモデル化するのに役立ちます。再生可能エネルギーの予測、グリッドの運用と最適化、分散型エネルギー資産と需要側管理の調整、材料の革新と発見など、エネルギー移行の複数の領域ですでに AI の具体的なメリットが見られています。エネルギー分野での AI の使用はこれまで有望であることが示されていますが、革新や広範な受け入れはあまりありません。これは、私たちが必要としている将来のエネルギーシステムへの移行を早める絶好の機会を提供します。それは、排出がなく、非常に効率的で、連携されたシステムです。AI が世界のエネルギー移行を加速する能力は、これまで考えられていたよりもはるかに大きいですが、この可能性は、業界全体で AI の革新、採用、コラボレーションが強化されなければ実現できません。
AI は再生可能エネルギーグリッドの回復力にとってどのように重要なのでしょうか?
- 再生可能エネルギーへの世界的な移行を通じて分散型グリッドを管理するには、人工知能(AI)技術が必要になる。
- AIはエネルギーの使用と貯蔵を最適化してコストを削減し、電力の供給と需要のニーズをリアルタイムでバランスさせることができます。
- 強靭な電源を確保し、イノベーションを促進し、アクセスを民主化するために、技術ガバナンスが必要となる。
過去の技術を利用して今日の課題を解決するために、集中型電力供給源からの長距離送電線を近代化するためのグリッド インフラストラクチャへの政府支出を求める声が上がっています。分散型再生可能エネルギー源を活用する人工知能 (AI) という、より優れた進歩的な代替手段がすでに存在しています。したがって、AI は次の 2 つの点で再生可能エネルギーの推進の鍵となります。
図3:再生可能エネルギーの推進におけるAIの支援
- 再生可能エネルギーの複雑化 世界中で電化が進むにつれ、分散型の再生可能資源から生成されるエネルギーは増えるでしょう。バッテリー、民間のソーラーパネル、風力発電所、マイクログリッドを考えてみましょう。これらは持続可能性に有利ではありますが、世界中のエネルギーインフラを複雑にします。電気自動車の普及、暖房システムの電化、風力タービンやソーラーパネルなどの分散型エネルギー資源 (DER) の急増により、今後 10 ~ 15 年間は、グリッドを崩壊させることなく需要と供給を一致させる微妙なバランス調整が必要になります。オーストラリアを例に挙げましょう。2030 年と 2050 年までに、国内の住宅、商業、産業施設の 30% と 60% が太陽エネルギーを使用すると予想されています。商業、政府、住宅の消費者がソーラーパネルを使用して独自のエネルギーを生成し、それを電気自動車で使用するためにバッテリーに蓄えたり、グリッドに戻したりするケースが増えており、世界中で同様の状況が発生しています。我々の予測によると、2030 年までにヨーロッパの送電網には 8,900 万のエネルギー貯蔵装置が設置される見込みで、これは現在の 3,600 万という推定値より増えることになります (下図参照)。何百万もの個別の機器が電力を送ったりダウンロードしたりすれば、電力網は混乱状態になる可能性があります。言い換えれば、電力会社がビジネス モデルを変更する必要があります。電力を生産して送電する単一の電力会社への依存が減っているからです。まもなく、電力会社は唯一のエネルギー源ではなくなります。代わりに、さまざまなソースや貯蔵システムから電子を転送して、必要な場所に毎秒効率的にエネルギーを供給することで、送電網のバランスを保つことが求められるようになります。
- 数百万のグリッドのバランスをとるAI 分散型エネルギー源は、AI ソフトウェアを使用して、生成した余剰電力をグリッドに転送でき、電力会社はその電力を必要な場所にルーティングできます。家庭、オフィス、車、その他の構造物の需要が低いときに余分なエネルギーを保管できるエネルギー貯蔵と同様に、AI は、発電が不十分または不可能な場合にそのエネルギーを使用できます。そのシステムには多くの可動部分があるため、グリッドの安定性を維持するには、調整、予測、最適化が必要です。DER を個々のミュージシャンと想像すると、電力会社は、AI が交響曲をリアルタイムで作曲する間、オーケストラを時間通りに維持する指揮者のようなものです。その結果、AI ベースのシステムはゲームを一変させることができます。予期しないイベントが発生したときに回復力と柔軟性が高くなるグリッドは、インフラストラクチャを多用するシステムから AI を中心としたシステムに切り替えることの結果です。予測と制御は、数日ではなく数秒で可能になりました。
分散型エネルギー資源に関しては、公益事業体、意思決定者、規制当局がそれぞれの役割について検討を開始する必要があります。分散型エネルギー生産者の寄せ集めの管理と調整が不可欠です。屋上ソーラーパネルなどの技術により、より多くの住宅や企業が自家発電を始めるにつれて、電気を購入する顧客の数が減少する中で、公益事業体がこの状況で主導権を握ることができます。気候変動は今後も世界にさらに異常気象をもたらすため、時間を無駄にすることはできません。現在の経済状況や、米国で予想されるような長期にわたる政治討論は、必要な投資を遅らせる可能性があります。最善の策は、長いケーブルと変圧器のネットワークを備えた集中型グリッドに投資しないことです。むしろ、政府は、コミュニティや建物が独自の電気を生産し、それをソフトウェアでリアルタイムに管理するグリッドの計画を立てるべきです。再生可能エネルギーの生産に対する公的資金と、民間企業や住宅でのより分散したエネルギー生成に対するインセンティブは、政策立案者が検討すべきものです。そして、エネルギー環境全体にわたって相互運用性、透明性、公平なアクセスを保証するためには、AI ソフトウェアのグローバルに承認されたガバナンスが必要です。
結論
AI 関連技術ガバナンスへの積極的かつ協力的なアプローチは、エネルギー部門にとって有利となるでしょう。今後数年間は、この分野でのイノベーションを促進し、エネルギーシステム全体で革新的な低炭素技術へのアクセスを民主化するために重要になります。これまで受け入れられていなかった場合、業界は、これとより一般的なデジタル化の条件として、共通のデータ標準を実装する必要があります。エネルギー業界の関係者間の協力の強化は、共同研究開発プロジェクト、AI コンセプトを実施するためのベストプラクティス手法の共有、使用例の提示という形をとる可能性があります。コラボレーションにより、AI 技術の作成者、消費者、規制当局、および AI システムとやり取りするその他の利害関係者間の信頼も促進される可能性があります。グリッド規制当局とオペレーターは、グリッドの管理と運用が特に配電網レベルでより複雑になるにつれて、グリッドの運用方法を強化するために、さまざまなデジタル技術 (機械学習、量子コンピューティング、ブロックチェーン技術など) の可能性を考慮する必要があります。電力システムが脱炭素化および分散化するにつれて、グリッド管理を再考する必要性が生じ、グリッドアクセス、運用、管理の決定のための新しい、より分散化された設計を開発する機会が生じます。従来の手動のコマンド アンド コントロール管理方法 (中央システム オペレーターを使用) は、テクノロジーを利用した分散型意思決定に置き換える必要があります。これにより、意思決定が迅速化され、分散された小規模資産がグリッドに自動的に追加されます (たとえば、ブロックチェーン、デジタル ID、スマート コントラクトを使用)。政府は、この公平なデータ配布の一環として、公共機関や業界団体に産業データの中央データベースの管理と資金提供を命じたり、インセンティブを提供したりすることができます。これらのデータセットにより、AI アルゴリズムのトレーニングが可能になり、低品質のデータやまばらなデータによって頻繁に引き起こされるアルゴリズムの偏りを軽減できる可能性があります。
電力効率と耐久性に優れたシステムに対する需要の高まりにより、エネルギーハーベスティングシステムの需要も高まっています。データブリッジマーケットリサーチは、エネルギーハーベスティングシステム市場は2021~2028年の予測期間に10.04%のCAGRで成長すると分析しています。これは、現在の市場価値が2028年までに10億4,250万米ドルに上昇することを意味します。エネルギーハーベスティングシステムとは、環境からのエネルギーを使用可能な電力に変換する技術です。このシステムは、熱、光、音、振動の形で失われていた少量のエネルギーを環境から抽出します。北米は、建物や家電製品でのエネルギーハーベスティングシステムの採用と応用が増えているため、市場を支配しています。産業および自動車部門の成長も、この地域の国々で市場の成長を後押ししています。米国はここで最大の貢献者です。
この研究の詳細については、以下をご覧ください。 https://www.databridgemarketresearch.com/jp/reports/global-energy-harvesting-system-market