データ センターは、本質的にはアウトソースされたデータ センターであるため、インフラストラクチャ サービス (IaaS) の成長を急速に促進する触媒になりつつあります。IaaS とデータ センターに対する個々の需要は、両方のソリューションの組み合わせによって満たされてきました。この組み合わせは、本質的には、データ センター サービスとソリューションをインフラストラクチャ ソリューションとして提供することを意味します。データ センターの構築とインフラストラクチャ サービスの主な違いは、従来、データ センターはエンド ユーザーによって構築され、すべての機器、コンポーネントで構成され、構築には特殊なインフラストラクチャが必要であったことです。また、複雑な問題や問題が発生した場合に、それらすべてに対処できる十分なスキルを備えた、必要な IT プロフェッショナル全員を配置する必要もあります。
これらのサービスはすべて、ストレージとインフラストラクチャの容量を向上させることを目的として、さまざまな組織の敷地内にインストールされ、統合されています。オンプレミスのデータセンターの統合には、さまざまなインフラストラクチャ、コンポーネント、および人員のニーズを満たすために多額の資金が必要です。そのため、さまざまな IT サービス プロバイダーが独自の専用データセンターを構築し、IaaS として提供し始めています。さまざまな IT プロバイダーが提供するこの革新的なソリューションは、インフラストラクチャの構築に多額の資本支出を必要とせずにデータセンターのすべての利点を利用できるため、中小企業にとって非常に費用対効果に優れています。
データ センターはサービスとして利用できるため、データ センターの運用を最適化する責任を負っている IT プロバイダーが、データ センターのメンテナンスとアップグレードのコストを負担します。このタイプのサービスの利点の 1 つは、さまざまな IT プロバイダーがデータ センターを人工知能と統合し始めていることです。これにより、非常に効果的な専門的なビジネス ソリューションを提供する能力が大幅に向上しました。人工知能はデータ センターのセキュリティ対策の強化に役立つため、この影響は主にプラスです。サイバー攻撃に対する保護の必要性がかつてないほど高まっているため、人工知能の統合により、ストレージ サーバーはさまざまな保護対策を採用して機密情報の望ましくない侵入を撃退できるようになります。
あらゆるデータ センター インフラストラクチャの主要な要件の 1 つは、あまり使用されていないストレージ サーバーを介したエネルギー フローを削減し、より優れた冷却メカニズムの動作を必要とする運用の必要性が高いサーバーのエネルギー フローを増やすことによって、エネルギーの有効性を補うことなく、エネルギーを節約するための最適なソリューションを備えることです。
データセンターにおける AI のもう 1 つの利点は、さまざまなビジネス運用ニーズに基づく予測分析を利用できることです。これにより、ストレージ サーバーの最適化に役立つだけでなく、これらのサーバーのダウンタイムに関連する分析も実行できます。AI は、サーバーの問題領域をより適切に特定して分離し、消費者の使用状況に応じてメンテナンス期間を計画するのに役立ちます。これはまた、AI が IT プロフェッショナルの職務を引き継いで、機器やさまざまなコンポーネントを一貫して監視する責任を負っていることを意味します。したがって、AI はさまざまな IT プロフェッショナルの人員要件とトレーニング コストを削減するのに役立ちます。
AI の利点は、データ センターに AI を導入しないことの欠点をはるかに上回りますが、商業的に大規模なデータ センターでの AI の実際の最適化はまだかなり先であり、そう遠くない将来、データ センターのさまざまな操作を最適化するというこの傾向が現実のものとなり、AI がデータ センター業界を支配するようになるでしょう。
データセンターの自動化に関するさまざまな市場動向と貴重な洞察は、データブリッジマーケットリサーチが発行した「世界のデータセンター自動化ソフトウェア市場”: https://www.databridgemarketresearch.com/jp/reports/global-data-center-automation-software-market