Global Data Science Platform Market
Tamaño del mercado en miles de millones de dólares
Tasa de crecimiento anual compuesta (CAGR) :
%

![]() |
2024 –2031 |
![]() |
USD 158.59 Billion |
![]() |
USD 1,216.19 Billion |
![]() |
|
![]() |
|
Segmentación del mercado global de plataformas de ciencia de datos, por tipo de componente (plataforma, servicios, soporte y mantenimiento, consultoría e implementación e integración), división de funciones (marketing, ventas, logística, finanzas y contabilidad, atención al cliente, operaciones comerciales y otros), modelo de implementación (local y en la nube), tamaño de la organización (pequeñas y medianas empresas [PYME], grandes empresas), aplicación de usuario final (banca, servicios financieros y seguros [BFSI], telecomunicaciones y TI, comercio minorista y electrónico, atención médica y ciencias biológicas, fabricación, energía y servicios públicos, medios y entretenimiento, transporte y logística, gobierno y otros): tendencias de la industria y pronóstico hasta 2031
Análisis del mercado de plataformas de ciencia de datos
El mercado de plataformas de ciencia de datos está experimentando un rápido crecimiento debido a la integración de tecnologías avanzadas como la inteligencia artificial (IA), el aprendizaje automático (ML) y la computación en la nube . Uno de los últimos métodos que impulsan el mercado es el uso de herramientas AutoML (aprendizaje automático automatizado), que simplifican el proceso de creación de modelos, lo que permite a las empresas con menos experiencia aprovechar la IA de manera eficaz. Estas plataformas permiten a los científicos de datos centrarse en la innovación, mientras que la automatización se encarga de las tareas repetitivas.
Las plataformas de ciencia de datos basadas en la nube, como Google Cloud AI y AWS SageMaker, promueven aún más la escalabilidad y la rentabilidad. Al utilizar la nube, las empresas pueden acceder a una inmensa potencia computacional a pedido, lo que garantiza el procesamiento rápido de grandes conjuntos de datos.
Otro avance es la adopción de herramientas colaborativas que permiten a los equipos trabajar simultáneamente en proyectos, lo que aumenta la eficiencia y reduce el tiempo de comercialización de las soluciones de IA. Estas plataformas suelen integrarse con los ecosistemas de datos existentes, lo que las hace accesibles a una amplia gama de industrias, como la atención médica, las finanzas y el comercio minorista. A medida que las organizaciones se dan cuenta del valor de los conocimientos basados en datos, se espera que la demanda de plataformas integrales de ciencia de datos aumente significativamente, lo que impulsará el crecimiento del mercado.
Tamaño del mercado de plataformas de ciencia de datos
El tamaño del mercado global de plataformas de ciencia de datos se valoró en USD 158,59 mil millones en 2023 y se proyecta que alcance los USD 1,216,19 mil millones para 2031, con una CAGR del 29,00% durante el período de pronóstico de 2024 a 2031. Además de los conocimientos del mercado, como el valor de mercado, la tasa de crecimiento, los segmentos del mercado, la cobertura geográfica, los actores del mercado y el escenario del mercado, el informe de mercado curado por el equipo de investigación de mercado de Data Bridge incluye un análisis experto en profundidad, análisis de importación / exportación, análisis de precios, análisis de consumo de producción y análisis pestle.
Tendencias del mercado de plataformas de ciencia de datos
“El auge del aprendizaje automático automatizado (AutoML)”
Una tendencia importante que impulsa el crecimiento del mercado de plataformas de ciencia de datos es el auge del aprendizaje automático automatizado (Automated Machine Learning, AutoML). Esta tecnología simplifica y acelera el proceso de desarrollo de modelos, lo que permite a los usuarios con conocimientos limitados en ciencia de datos crear modelos predictivos. Por ejemplo, en enero de 2023, Science Applications International Corp. presentó la plataforma de ciencia de datos "Tenjin", una solución versátil que admite el desarrollo de código bajo a código completo para aplicaciones de IA y aprendizaje automático. Desarrollada por Dataiku, Tenjin facilita todo el ciclo de vida del desarrollo de modelos de IA y ML, desde la implementación hasta la capacitación y la automatización, junto con herramientas avanzadas de visualización de datos. Esta plataforma tiene como objetivo simplificar procesos complejos, haciendo que la IA sea accesible para una gama más amplia de empresas.
Alcance del informe y segmentación del mercado de plataformas de ciencia de datos
Atributos |
Perspectivas clave del mercado de la plataforma de ciencia de datos |
Segmentos cubiertos |
|
Países cubiertos |
EE. UU., Canadá y México en América del Norte, Alemania, Francia, Reino Unido, Países Bajos, Suiza, Bélgica, Rusia, Italia, España, Turquía, Resto de Europa en Europa, China, Japón, India, Corea del Sur, Singapur, Malasia, Australia, Tailandia, Indonesia, Filipinas, Resto de Asia-Pacífico (APAC) en Asia-Pacífico (APAC), Arabia Saudita, Emiratos Árabes Unidos, Sudáfrica, Egipto, Israel, Resto de Medio Oriente y África (MEA) como parte de Medio Oriente y África (MEA), Brasil, Argentina y Resto de América del Sur como parte de América del Sur |
Actores clave del mercado |
IBM (EE. UU.), DataRobot Inc. (EE. UU.), apheris AI GmbH (Alemania), The Digital Talent Ecosystem (EE. UU.), Databand (Israel), dotData (EE. UU.), Explorium Inc. (EE. UU.), Noogata (Israel), Tecton Inc. (EE. UU.), Spell Designs Pty Ltd (EE. UU.), Arrikto Inc. (EE. UU.), Iterative (EE. UU.), Google Inc (EE. UU.), Microsoft (EE. UU.), SAS Institute Inc. (EE. UU.), Amazon Web Services, Inc. (EE. UU.), The MathWorks, Inc. (EE. UU.), Cloudera Inc. (EE. UU.), Teradata (EE. UU.), TIBCO Software Inc. (EE. UU.), ALTERYX, INC. (EE. UU.), RapidMiner (EE. UU.), Databricks (EE. UU.), Snowflake Inc. (EE. UU.), H2O.ai (EE. UU.), Altair Inc. (EE. UU.), Anaconda Inc. (EE. UU.), SAP SE (EE. UU.), Domino Data Lab Inc. (EE. UU.) y Dataiku (EE. UU.) |
Oportunidades de mercado |
|
Conjuntos de información de datos de valor añadido |
Además de los conocimientos del mercado, como el valor de mercado, la tasa de crecimiento, los segmentos del mercado, la cobertura geográfica, los actores del mercado y el escenario del mercado, el informe de mercado elaborado por el equipo de investigación de mercado de Data Bridge incluye un análisis experto en profundidad, análisis de importación/exportación, análisis de precios, análisis de consumo de producción y análisis pestle. |
Definición del mercado de plataformas de ciencia de datos
Una plataforma de ciencia de datos es un entorno integrado que proporciona herramientas, bibliotecas e infraestructura para que los científicos de datos desarrollen, administren y ejecuten proyectos basados en datos. Permite a los usuarios recopilar, analizar y visualizar grandes conjuntos de datos, al tiempo que facilita la colaboración entre equipos. Estas plataformas suelen admitir varios lenguajes de programación (como Python, R y SQL), algoritmos de aprendizaje automático y canalizaciones de datos para la creación y la implementación eficientes de modelos. Las plataformas de ciencia de datos también ofrecen capacidades como control de versiones, automatización y escalabilidad, lo que facilita que las organizaciones aprovechen los conocimientos de los datos de una manera estructurada y repetible para la toma de decisiones.
Dinámica del mercado de plataformas de ciencia de datos
Conductores
- Demanda de toma de decisiones basada en datos
La creciente dependencia de la toma de decisiones basada en datos es un factor importante en el mercado de plataformas de ciencia de datos. Las organizaciones de todos los sectores están cambiando hacia el uso de información basada en datos para mejorar la estrategia, mejorar la interacción con los clientes y optimizar las operaciones. Las plataformas de ciencia de datos permiten a las empresas procesar y analizar de manera eficiente grandes conjuntos de datos, lo que conduce a decisiones más precisas e informadas. Por ejemplo, en octubre de 2023, GoodData Corporation presentó su última plataforma de análisis de datos impulsada por IA, diseñada para mejorar los flujos de trabajo de aprendizaje automático (ML), IA e inteligencia empresarial (BI). Esta plataforma incorpora varias capacidades de IA generativa, incluido un asistente virtual que proporciona resúmenes e información. Al agilizar los procesos de descubrimiento y desarrollo de datos, permite a los usuarios tomar decisiones informadas más rápidamente, lo que en última instancia mejora la eficiencia y la eficacia en entornos basados en datos.
- Crecimiento del Big Data
El aumento exponencial de los datos generados a partir de diversas fuentes, como dispositivos IoT, plataformas de redes sociales y actividades de comercio electrónico, es un factor clave del mercado de plataformas de ciencia de datos. Estos enormes volúmenes de datos estructurados y no estructurados requieren plataformas robustas para un almacenamiento, procesamiento y análisis eficientes. Por ejemplo, en enero de 2024, Databricks lanzó una nueva plataforma de inteligencia empresarial diseñada específicamente para operadores de telecomunicaciones y proveedores de servicios de red (NSP). Esta innovadora plataforma empodera a estas empresas al brindarles una visión integral de sus redes, operaciones e interacciones con los clientes. Es importante destacar que garantiza la privacidad de los datos y protege la propiedad intelectual confidencial, lo que permite a las empresas de telecomunicaciones tomar decisiones informadas y, al mismo tiempo, mantener altos estándares de seguridad en sus operaciones.
Oportunidades
- Innovación de código abierto
La innovación de código abierto mejora significativamente el mercado de plataformas de ciencia de datos al proporcionar herramientas accesibles que fomentan la colaboración y el desarrollo rápido. Plataformas como Apache Spark y TensorFlow ejemplifican esta tendencia, permitiendo a los científicos de datos aprovechar bibliotecas robustas sin costosas tarifas de licencia. A medida que las organizaciones buscan soluciones rentables para el aprendizaje automático y el procesamiento de big data, adoptan cada vez más estos marcos de código abierto, lo que genera un aumento en las contribuciones y mejoras de la comunidad. Este entorno colaborativo no solo acelera el desarrollo de nuevas funciones, sino que también atrae a un grupo de talentos más grande, lo que crea oportunidades para que las empresas innoven y mantengan ventajas competitivas en un panorama impulsado por los datos.
- Avances en análisis predictivo
El auge de la analítica predictiva en los sectores de la atención sanitaria, las finanzas y el comercio minorista presenta importantes oportunidades en el mercado de las plataformas de ciencia de datos. En el ámbito de la atención sanitaria, los modelos predictivos se utilizan para pronosticar los resultados de los pacientes y optimizar los planes de tratamiento, como se ha visto con herramientas como IBM Watson Health. En el ámbito financiero, las empresas aprovechan la analítica predictiva para la calificación crediticia y la detección de fraudes, como lo demuestran los algoritmos de calificación avanzados de FICO. Por ejemplo, en octubre de 2022, IBM Corporation lanzó la biblioteca de cintas Diamondback, una solución de almacenamiento avanzada que utiliza tecnología LTO. Este innovador producto cuenta con una impresionante capacidad de hasta 27 petabytes (PB) de almacenamiento de datos dentro de un solo rack de servidores. Diamondback está diseñado para satisfacer las crecientes demandas de almacenamiento de datos, ofreciendo escalabilidad y confiabilidad para las organizaciones que necesitan gestionar grandes cantidades de información de forma segura y eficiente. A medida que las organizaciones reconocen el valor de los conocimientos predictivos para la toma de decisiones, la demanda de plataformas de ciencia de datos sofisticadas capaces de gestionar modelos y previsiones complejos sigue creciendo, lo que crea perspectivas de mercado lucrativas.
Restricciones/Desafíos
- Preocupaciones sobre la privacidad y seguridad de los datos
Las preocupaciones sobre la privacidad y la seguridad de los datos obstaculizan significativamente el mercado de las plataformas de ciencia de datos. A medida que las organizaciones dependen más del análisis de datos, se enfrentan a una presión cada vez mayor para cumplir con regulaciones estrictas como GDPR y CCPA. El incumplimiento puede resultar en fuertes multas y daños a la reputación, lo que lleva a las organizaciones a ser cautelosas en sus prácticas de manejo de datos. Esta inquietud restringe la adopción de soluciones avanzadas de ciencia de datos, ya que las empresas pueden priorizar la seguridad sobre la innovación. Además, la necesidad de medidas de seguridad sólidas puede aumentar los costos y la complejidad de la implementación, lo que disuade aún más a las organizaciones de invertir en nuevas plataformas de ciencia de datos y desacelera el crecimiento general del mercado.
- Falta de profesionales cualificados
La falta de profesionales cualificados supone un importante obstáculo para el mercado de plataformas de ciencia de datos. La rápida evolución de las tecnologías de ciencia de datos ha dado lugar a una importante brecha de talentos, y muchas organizaciones tienen dificultades para encontrar científicos y analistas de datos cualificados. Esta escasez impide la utilización eficaz de plataformas avanzadas de ciencia de datos, lo que conduce a un rendimiento inferior en las iniciativas de análisis. Las empresas suelen invertir en herramientas sofisticadas, pero no pueden maximizar su potencial debido a la falta de experiencia en la interpretación de datos y la obtención de información útil. En consecuencia, este déficit de talentos sofoca la innovación, ralentiza los plazos de los proyectos y, en última instancia, limita el crecimiento del mercado, ya que las empresas no aprovechan al máximo las capacidades de la ciencia de datos.
Este informe de mercado proporciona detalles de los nuevos desarrollos recientes, regulaciones comerciales, análisis de importación y exportación, análisis de producción, optimización de la cadena de valor, participación de mercado, impacto de los actores del mercado nacional y localizado, analiza las oportunidades en términos de bolsillos de ingresos emergentes, cambios en las regulaciones del mercado, análisis estratégico del crecimiento del mercado, tamaño del mercado, crecimientos del mercado de categorías, nichos de aplicación y dominio, aprobaciones de productos, lanzamientos de productos, expansiones geográficas, innovaciones tecnológicas en el mercado. Para obtener más información sobre el mercado, comuníquese con Data Bridge Market Research para obtener un informe de analista, nuestro equipo lo ayudará a tomar una decisión de mercado informada para lograr el crecimiento del mercado.
Alcance del mercado de plataformas de ciencia de datos
El mercado está segmentado en función del tipo de componente, la división de funciones, el modelo de implementación, el tamaño de la organización y la aplicación del usuario final. El crecimiento entre estos segmentos le ayudará a analizar los segmentos de crecimiento reducido de las industrias y brindará a los usuarios una valiosa descripción general del mercado y conocimientos del mercado para ayudarlos a tomar decisiones estratégicas para identificar las principales aplicaciones del mercado.
Tipo de componente
- Plataforma
- Servicios
Servicios profesionales
- Soporte y mantenimiento
- Consultante
- Implementación e integración
Servicios gestionados
División de funciones
- Marketing
- Ventas
- Logística
- Finanzas y Contabilidad
- Atención al cliente
- Operaciones comerciales
- Otros
Modelo de implementación
- En las instalaciones
- Basado en la nube
Tamaño de la organización
- Pequeñas y medianas empresas (PYME)
- Grandes empresas
Aplicación de usuario final
- Banca, servicios financieros y seguros (BFSI)
- Telecomunicaciones y TI
- Comercio minorista y comercio electrónico
- Salud y ciencias de la vida
- Fabricación
- Energía y servicios públicos
- Medios y entretenimiento
- Transporte y Logística
- Gobierno
- Otros
Análisis regional del mercado de plataformas de ciencia de datos
Se analiza el mercado y se proporcionan información y tendencias del tamaño del mercado por tipo de componente, división de funciones, modelo de implementación, tamaño de la organización y aplicación del usuario final como se menciona anteriormente.
Los países cubiertos en el informe de mercado son EE. UU., Canadá, México en América del Norte, Alemania, Suecia, Polonia, Dinamarca, Italia, Reino Unido, Francia, España, Países Bajos, Bélgica, Suiza, Turquía, Rusia, Resto de Europa en Europa, Japón, China, India, Corea del Sur, Nueva Zelanda, Vietnam, Australia, Singapur, Malasia, Tailandia, Indonesia, Filipinas, Resto de Asia-Pacífico (APAC) en Asia-Pacífico (APAC), Brasil, Argentina, Resto de Sudamérica como parte de Sudamérica, Emiratos Árabes Unidos, Arabia Saudita, Omán, Qatar, Kuwait, Sudáfrica, Resto de Medio Oriente y África (MEA) como parte de Medio Oriente y África (MEA).
Se espera que América del Norte domine el mercado de plataformas de ciencia de datos debido a la presencia de una infraestructura bien establecida y a los bajos costos laborales en los países en desarrollo. Además, se estima que los servicios posventa efectivos que ofrecen los fabricantes dentro de las economías acelerarán aún más la expansión durante el período de pronóstico.
Se espera que la región Asia-Pacífico experimente un crecimiento significativo durante el período de pronóstico debido al rápido crecimiento de las operaciones de exploración de petróleo y gas en la zona dentro de la región. La gran base de producción de artículos electrónicos de China la convierte en un importante contribuyente a la expansión del mercado regional.
La sección de países del informe también proporciona factores de impacto de mercado individuales y cambios en la regulación del mercado que afectan las tendencias actuales y futuras del mercado. Los puntos de datos como el análisis de la cadena de valor ascendente y descendente, las tendencias técnicas y el análisis de las cinco fuerzas de Porter, los estudios de casos son algunos de los indicadores utilizados para pronosticar el escenario del mercado para países individuales. Además, la presencia y disponibilidad de marcas globales y sus desafíos enfrentados debido a la competencia grande o escasa de las marcas locales y nacionales, el impacto de los aranceles nacionales y las rutas comerciales se consideran al proporcionar un análisis de pronóstico de los datos del país.
Cuota de mercado de la plataforma de ciencia de datos
El panorama competitivo del mercado proporciona detalles por competidor. Los detalles incluidos son una descripción general de la empresa, las finanzas de la empresa, los ingresos generados, el potencial de mercado, la inversión en investigación y desarrollo, las nuevas iniciativas de mercado, la presencia global, los sitios e instalaciones de producción, las capacidades de producción, las fortalezas y debilidades de la empresa, el lanzamiento de productos, la amplitud y variedad de productos, y el dominio de las aplicaciones. Los puntos de datos anteriores proporcionados solo están relacionados con el enfoque de las empresas en relación con el mercado.
Los líderes del mercado de plataformas de ciencia de datos que operan en el mercado son:
- IBM (Estados Unidos)
- DataRobot Inc., (Estados Unidos)
- apheris AI GmbH (Alemania)
- El ecosistema del talento digital (EE.UU.)
- Banda de datos (Israel)
- dotData (Estados Unidos)
- Explorium Inc., (Estados Unidos)
- Noogata (Israel)
- Tecton Inc., (Estados Unidos)
- Spell Designs Pty Ltd (Estados Unidos)
- Arrikto Inc., (Estados Unidos)
- Iterativo (EE.UU.)
- Google Inc (Estados Unidos)
- Microsoft (Estados Unidos)
- SAS Institute Inc., (Estados Unidos)
- Amazon Web Services, Inc. (Estados Unidos)
- The MathWorks, Inc. (Estados Unidos)
- Cloudera Inc., (Estados Unidos)
- Teradata (Estados Unidos)
- TIBCO Software Inc. (Estados Unidos)
- ALTERYX, INC. (EE.UU.)
- RapidMiner (Estados Unidos),
- Databricks (Estados Unidos)
- Snowflake Inc., (Estados Unidos)
- H2O.ai (Estados Unidos)
- Altair Inc., (Estados Unidos)
- Anaconda Inc., (Estados Unidos)
- SAP SE (Estados Unidos)
- Domino Data Lab Inc., (Estados Unidos)
- Dataiku (Estados Unidos)
Últimos avances en el mercado de plataformas de ciencia de datos
- En junio de 2024, IBM Corporation anunció una colaboración estratégica con Telefónica Tech destinada a impulsar la adopción de soluciones de inteligencia artificial (IA), análisis y gobernanza de datos de vanguardia. Esta asociación busca abordar las necesidades cambiantes de las empresas, permitiéndoles aprovechar las tecnologías avanzadas para mejorar la toma de decisiones, la eficiencia operativa y las experiencias de los clientes en un entorno empresarial cada vez más complejo.
- En marzo de 2024, Microsoft reveló una colaboración con NVIDIA enfocada en mejorar la innovación en el cuidado de la salud y las ciencias biológicas a través de la IA en la nube y las tecnologías de computación acelerada. Esta asociación tiene como objetivo revolucionar la atención al paciente al agilizar el acceso a la medicina de precisión y los diagnósticos impulsados por IA. Se espera que la iniciativa haga avanzar significativamente la industria de la salud al brindar soluciones más rápidas y precisas para diagnosticar y tratar a los pacientes, mejorando en última instancia los resultados de salud.
- En enero de 2023, Science Applications International Corp. presentó la plataforma de ciencia de datos "Tenjin", una solución versátil que admite el desarrollo de código bajo a código completo para aplicaciones de IA y aprendizaje automático. Con tecnología de Dataiku, Tenjin facilita todo el ciclo de vida del desarrollo de modelos de IA y ML, desde la implementación hasta la capacitación y la automatización, junto con herramientas avanzadas de visualización de datos. Esta plataforma tiene como objetivo simplificar procesos complejos, haciendo que la IA sea accesible para una gama más amplia de empresas.
- En octubre de 2022, IBM Corporation lanzó la biblioteca de cintas Diamondback, una solución de almacenamiento avanzada que utiliza tecnología LTO. Este innovador producto cuenta con una impresionante capacidad de hasta 27 petabytes (PB) de almacenamiento de datos dentro de un solo rack de servidores. Diamondback está diseñado para satisfacer las crecientes demandas de almacenamiento de datos, ofreciendo escalabilidad y confiabilidad para las organizaciones que necesitan administrar grandes cantidades de información de forma segura y eficiente.
- En junio de 2022, SAS Institute amplió sus capacidades con la adquisición de Kamakura Corporation, mejorando su cartera con soluciones de riesgo integradas. Esta adquisición se centra en la prestación de servicios profesionales especializados en gestión de activos y pasivos (ALM) y otros sectores financieros, incluida la banca. Al combinar recursos y experiencia, SAS tiene como objetivo ofrecer soluciones integrales que aborden los complejos desafíos de la gestión de riesgos, ayudando a las organizaciones a tomar decisiones financieras informadas y a afrontar las incertidumbres del mercado de manera eficaz.
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.