Us Predictive Maintenance Market
Tamaño del mercado en miles de millones de dólares
Tasa de crecimiento anual compuesta (CAGR) : %
Período de pronóstico |
2024 –2034 |
Tamaño del mercado (año base) |
USD 5.67 Billion |
Tamaño del mercado (año de pronóstico) |
USD 98.62 Billion |
Tasa de crecimiento anual compuesta (CAGR) |
|
Jugadoras de los principales mercados |
U.S. Predictive Maintenance Market Segmentation, By Offering (Solution and Services), Deployment Mode (Cloud and On-Premise), Application (Transmission Check-Up, Oil Change, Tire Inspection, Coolant Replacement, Brake, Engine Air Filter, Cabin Filter, and Belt Change), Enterprise Size (Large Size Organizations and Small & Medium Sized Organization), Vehicle Type (Passenger Car, Commercial Vehicle, and Off Road Vehicle), End User (Fleet Owners, FMS, Manufacturers, FMC, and Individual) - Industry Trends and Forecast to 2034
U.S. Predictive Maintenance Market Analysis
The U.S. predictive maintenance market is witnessing significant growth driven by the need to reduce operational burdens through maintenance support services, the increasing demand for project-based equipment, and the rapid pace of technological innovation, which allows companies to minimize depreciation risks and avoid financial loss. However, the market faces restraints such as high capital investment and the limited availability of specialized equipment. Opportunities lie in forming partnerships and collaborations with technology providers, embracing green initiatives and sustainability, and capitalizing on growing industrialization and technological adoption. Despite these prospects, the market is challenged by inventory management complexities and intense competition, leading to market saturation.
U.S. Predictive Maintenance Market Size
Data Bridge Market Research analyzes that the predictive maintenance market is expected to reach a value of expected to reach USD 98.62 billion by 2034 from USD 5.67 billion in 2023, at a CAGR of 29.9% during the forecast period. In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and PESTLE analysis
U.S. Predictive Maintenance Market Trend
‘Adoption of IoT and AI’
The adoption of IoT devices allows for continuous monitoring of equipment by collecting real-time data on performance and health. This data is then analyzed using AI algorithms to identify patterns and predict potential failures. By leveraging machine learning, organizations can improve the accuracy of their maintenance forecasts. This proactive approach minimizes unexpected downtime and enhances overall operational efficiency. Ultimately, the integration of IoT and AI transforms maintenance from reactive to predictive, driving better resource management. .
Report scope U.S. Predictive Maintenance Market
Report Metric |
U.S. Predictive Maintenance Market Insights |
Segments Covered |
|
Key Market Players |
AISIN CORPORATION (Japan), PHINIA Inc. (China), KPIT (India), Microsoft (U.S.), Aptiv (Ireland), Continental AG (Germany), Robert bosch gmbh (Germany), Siemens ag (Germany), SAP se (Germany), ZF friedrichshafen ag (Germany), Valeo corporation (France), IBM (U.S.), Teletrac navman (U.S.), Garrett motion inc. (U.S.), pstream Security Ltd. (United Kingdom), Verizon (U.S.), Infineon Technologies AG (Germany), Uptake technologies inc. (U.S.), Fluke Corporation (U.S.), PTC (U.S.), Rockwell Automation (U.S.), Embitel (India), Altair Engineering Inc. (U.S.), Honeywell International Inc. (U.S.), NEC Corporation (Japan), Emerson (U.S.), C3.AI (U.S.), Progress (U.S.), Fiix by Rockwell Automation Inc. (U.S.), and Ansys (U.S.) among others |
Market Opportunities |
|
Value Added Data |
In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and PESTLE analysis. |
U.S. Predictive Maintenance Market Definition
Predictive maintenance in the automotive industry refers to the use of data-driven analytics and real-time monitoring technologies to predict when a vehicle's components, such as engines, brakes, or tires, will require maintenance. By utilizing sensors, telematics, and IoT systems, predictive maintenance identifies patterns and early signs of wear or potential failure, allowing repairs or part replacements to be scheduled before breakdowns occur. This proactive approach minimizes unexpected vehicle downtime, enhances safety, reduces maintenance costs, and extends the overall lifespan of automotive components.
U.S. Predictive Maintenance Market Dynamics
Driver
- Growing Adoption of IoT in Industrial Operations
The growing adoption of IoT in industrial operations is a significant driver for the predictive maintenance market, as it enables real-time monitoring and data collection from equipment and machinery across various industries. IoT sensors continuously capture critical operational data such as temperature, vibration, pressure, and wear, which is then analyzed using advanced predictive algorithms to identify potential equipment failures before they occur. This proactive approach allows businesses to optimize maintenance schedules, reduce unexpected downtime, extend equipment lifespan, and lower operational costs. As industries increasingly adopt IoT for smart manufacturing, energy management, and supply chain optimization, predictive maintenance becomes essential for ensuring efficiency, productivity, and asset reliability in IoT-enabled environments.
For instance, in September 2024, Comcast's MachineQ launched an IoT-based power monitoring solution aimed at helping enterprises manage energy consumption and enhance operational efficiency. This solution facilitated predictive maintenance by detecting anomalies in power usage, enabling proactive servicing of critical equipment like ultra-low temperature freezers. The MQpower CT sensor provided real-time data, offering a comprehensive view of energy consumption and actionable insights. This innovation supported the growing adoption of IoT in industrial operations, allowing companies to optimize asset utilization and reduce overall costs while contributing to sustainability efforts.
- Growing Demand for Big Data and Analytics Solutions
The growing demand for big data and analytics solutions is significantly shaping the predictive maintenance market, as organizations increasingly recognize the value of data-driven insights in optimizing operational efficiency. By leveraging advanced analytics, companies can process vast amounts of real-time data from IoT sensors and other sources, enabling them to identify patterns, predict equipment failures, and make informed maintenance decisions. This proactive approach minimizes unplanned downtime, reduces maintenance costs, and enhances overall asset performance, driving further investment in big data technologies. As industries continue to adopt data analytics as a core component of their maintenance strategies, the predictive maintenance market is expected to experience substantial growth, fueled by the need for improved reliability and operational effectiveness. For instance,
In April 2024, Databricks launched the Data Intelligence Platform for Energy, designed to integrate AI capabilities across the energy sector. This platform utilizes an open lakehouse architecture, allowing organizations to manage large volumes of energy data while maintaining data privacy. It enables realtime asset performance management and proactive maintenance, helping companies reduce unplanned downtime and enhance operational efficiency. As the energy sector shifts towards cleaner, more reliable systems, the platform supports the growing demand for big data and analytics solutions, empowering organizations to optimize their infrastructure and implement predictive maintenance strategies effectively.
Opportunity
- Growing Demand for Sustainability
The growing demand for sustainability presents a significant opportunity for the predictive maintenance market. As industries aim to reduce energy consumption, minimize waste, and improve resource efficiency, predictive maintenance technologies can play a crucial role by optimizing equipment performance and preventing unexpected breakdowns. By enabling early detection of potential issues, these solutions help extend the lifespan of machinery, reduce downtime, and decrease the environmental impact of operations. This aligns with the broader push for sustainable practices, making predictive maintenance an attractive option for companies seeking to meet sustainability goals while improving operational efficiency.
For instance, In May 2023, according to an article published by Software GmbH, the Internet of Things (IoT) significantly transformed the manufacturing industry, enhancing sustainability efforts. IoT enables manufacturers to implement predictive maintenance, which uses data from sensors to forecast equipment failures. This proactive approach helps reduce unplanned downtime, maintenance costs, and carbon emissions. Predictive maintenance can increase productivity by 25% and decrease breakdowns by 70%. As manufacturers face mounting pressure to meet sustainability goals, the demand for predictive maintenance solutions is expected to grow. By optimizing production processes and minimizing waste, predictive maintenance directly supports the growing demand for sustainability, making it a vital aspect of modern manufacturing
- Collaboration With Tire Manufacturers for Smart Tires
As Collaboration with tire manufacturers for smart tires presents a valuable opportunity for the predictive maintenance market. As the automotive industry increasingly shifts toward smart technologies, integrating predictive maintenance solutions with smart tire systems can enhance vehicle performance and safety. These smart tires, equipped with sensors that monitor tire health, pressure, and temperature in real-time, provide critical data that predictive maintenance systems can analyze. By leveraging this data, fleet operators and vehicle owners can proactively address potential issues, reduce downtime, and improve overall vehicle efficiency. This collaboration not only strengthens the predictive maintenance market but also aligns with the growing demand for intelligent and sustainable automotive solutions.
For instance, In September 2023, Revvo and Smartcar introduced a connected tire solution aimed at transforming tire management for predictive maintenance. The partnership allowed tire retailers, fleets, and individuals to integrate vehicle telematics and automate predictive maintenance alerts, reducing downtime and optimizing resources. By leveraging this platform, tire vendors could address rising tire costs and improve customer service with proactive maintenance solutions. This collaboration marked a significant advancement in the predictive maintenance market, enabling smarter resource allocation and fewer emergency repairs through real-time data monitoring and automated workflows.
Restraint/ Challenge
- Integrating High-Quality Data for Automotive Predictive Maintenance
The high capital investment required for test and measurement equipment creates a barrier for new entrants into the market. The significant financial outlay needed to build a competitive inventory deters potential new players from entering the industry. This lack of new competition can lead to a market dominated by a few established firms, reducing innovation and limiting options for customers. Consequently, the high capital requirement not only restricts the growth and diversification of rental and leasing companies but also hinders overall market dynamism and customer choice.
For instance,
In March 2024, according to KHL Group LLP, United Rentals invested USD 1.1 billion to acquire UK-based A-Plant's temporary roadway business, expanding its offerings in the infrastructure and construction sectors. This strategic acquisition aimed to enhance its portfolio with specialized equipment and services, bolstering its position in the rental market. The move aligns with United Rentals' strategy to diversify and strengthen its service capabilities globally
- Limited Availability of Specialized Equipment
U.S. automotive predictive maintenance market players face significant challenge with integrating high-quality data. As vehicles become increasingly complex, equipped with advanced sensors and connected technologies, the amount of data generated is vast and diverse. This makes it difficult to consolidate information from various sources, such as telematics, onboard diagnostics, and historical maintenance records. If data integration is ineffective, it can lead to incomplete or inaccurate assessments of vehicle health, undermining the effectiveness of predictive maintenance strategies. In addition, the integration of legacy systems with modern technologies complicates the situation further. Many automotive companies still rely on outdated software that is incompatible with the advanced data analytics required for predictive maintenance. This gap prevents the seamless flow of high-quality data necessary for accurate forecasting of maintenance needs. Consequently, the inability to effectively integrate data can hinder the overall success of predictive maintenance initiatives, impacting not only vehicle reliability but also operational efficiency.
For instance, Tesla Autopilot and Full Self-Driving systems presents significant challenges due to the complexity of real-time data processing from multiple sensors and cameras. The reliance on accurate data for features such as Traffic Aware Cruise Control and Auto Lane Change means any discrepancies can lead to safety concerns and operational inefficiencies. In addition, the need for continuous software updates and system calibration complicate the integration process, making it essential to maintain a seamless flow of high-quality data for optimal vehicle performance.
U.S. Predictive Maintenance Market Scope
The market is segmented on the basis of by deployment mode, application, enterprise size, vehicle type, and end user. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Offering
- Solution
- Services
Deployment Mode
- Cloud
- On-Premise
Application
- Transmission Check-Up
- Oil Change
- Tire Inspection
- Coolant Replacement
- Brake
- Engine Air Filter
- Cabin Filter
- Belt Change
Enterprise Size
- Large Size Organizations
- Small & Medium Sized Organization
Vehicle Type
- Passenger Car
- Commercial Vehicle
- Off Road Vehicle
End User
- Fleet Owners
- FMS
- Manufacturers
- FMC
- Individual
U.S. Predictive Maintenance Market Share
Global predictive maintenance market competitive landscape provides details of competitors. Details included are company overview, company financials, revenue generated, market potential, investment in R&D, new market initiatives, production sites and facilities, company strengths and weaknesses, product launch, product approvals, product width and breadth, application dominance, and product type lifeline curve. The above data points provided are only related to the company’s focus on Predictive Maintenance the market.
Predictive maintenance market players operating in the market are:
- AISIN CORPORATION (Japan)
- PHINIA Inc. (China)
- KPIT (India)
- Microsoft (U.S.)
- Aptiv (Ireland)
- Continental AG (Germany)
- Robert bosch gmbh (Germany)
- Siemens ag (Germany)
- SAP se (Germany)
- ZF friedrichshafen ag (Germany)
- Valeo corporation (France)
- IBM (U.S.)
- Teletrac navman (U.S.)
- Garrett motion inc. (U.S.)
- Upstream Security Ltd. (United Kingdom)
- Verizon (U.S.)
- Infineon Technologies AG (Germany)
- Uptake technologies inc. (U.S.)
- Fluke Corporation (U.S.)
- PTC (U.S.)
- Rockwell Automation (U.S.)
- Embitel (India)
- Altair Engineering Inc. (U.S.)
- Honeywell International Inc. (U.S.)
- NEC Corporation (Japan)
- Emerson (U.S.)
- C3.AI (U.S.)
- Progress (U.S.)
- Fiix by Rockwell Automation Inc. (U.S.)
- Ansys (U.S.)
Latest Developments in U.S. Predictive Maintenance Market
- In July 2024, Fluke Reliability has teamed up with Augmentir to merge their connected worker platform with Fluke's AI-driven enterprise asset management solution, which aims to boost productivity and enhance Maintenance, Repair, and Operations (MRO) for industrial clients. This collaboration allows Fluke Corporation's customers to implement predictive maintenance strategies, enabling them to evaluate asset health and leverage AI diagnostics to anticipate faults up to six months ahead, thereby reducing unplanned downtime and streamlining maintenance processes
- In February 2023, Uptake has partnered with Daimler Truck North America to improve its predictive maintenance technology using a data-as-a-service model, granting DTNA customers access to datadriven insights that reduce unplanned fleet downtime and maintenance costs. This collaboration enables Uptake to utilize DTNA's streaming data, enhancing its predictive maintenance capabilities for more accurate vehicle issue predictions, optimized vehicle lifecycles, and tailored repair schedules, thereby minimizing unplanned maintenance events for customers
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Tabla de contenido
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF U.S. PREDICTIVE MAINTENANCE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATIONS
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 MARKETS COVERED
2.2 GEOGRAPHICAL SCOPE
2.3 YEARS CONSIDERED FOR THE STUDY
2.4 DBMR TRIPOD DATA VALIDATION MODEL
2.5 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS
2.6 DBMR MARKET POSITION GRID
2.7 DBMR MARKET POSITION GRID
2.8 DBMR MARKET POSITION GRID
2.9 VENDOR SHARE ANALYSIS
2.1 VENDOR SHARE ANALYSIS
2.11 VENDOR SHARE ANALYSIS
2.12 MULTIVARIATE MODELING
2.13 OFFERING TIMELINE CURVE
2.14 MARKET APPLICATION COVERAGE GRID
2.15 SECONDARY SOURCES
2.16 ASSUMPTIONS
3 EXECUTIVE SUMMARY
4 PREMIUM INSIGHTS
4.1 DEFINITION FOR EACH SEGMENT OF COMMERCIAL VEHICLE
4.1.1 COMMERCIAL VEHICLE
4.1.2 LIGHT COMMERCIAL VEHICLE
4.1.3 VANS
4.1.4 PICK-UP TRUCKS
4.1.5 TOW TRUCK
4.1.6 MINI BUS
4.1.7 OTHERS
4.1.8 MEDIUM AND HEAVY COMMERCIAL VEHICLE
4.1.9 TRUCK
4.1.10 MEDIUM TRUCKS
4.1.11 BOX TRUCK
4.1.12 FLATBED TRUCK
4.1.13 DELIVERY TRUCK
4.1.14 OTHERS
4.1.15 HEAVY TRUCK
4.1.16 REFRIGERATOR TRUCK
4.1.17 CONCRETE TRANSPORT TRUCK
4.1.18 TANKER TRUCK
4.1.19 OTHERS
4.1.20 BUSES
4.1.21 COACHES
4.2 REGULATION
4.3 PORTERS FIVE FORCES
4.4 TECHNOLOGICAL TRENDS IN THE U.S. PREDICTIVE MAINTENANCE MARKET FOR THE AUTOMOTIVE INDUSTRY
4.4.1 ARTIFICIAL INTELLIGENCE (AI)
4.4.2 MACHINE LEARNING
4.4.3 INTERNET OF THINGS (IOT)
4.4.4 CLOUD COMPUTING
4.5 PATENT ANALYSIS
4.6 VALUE CHAIN ANALYSIS
4.6.1 PRIMARY ACTIVITIES
4.6.2 SUPPORT ACTIVITIES
4.6.3 KEY VALUE DRIVERS IN THE U.S. PREDICTIVE MAINTENANCE MARKET
4.7 FACTORS FOR CAGR ESTIMATION ON GLOBAL, REGION & U.S. LEVEL
4.7.1 U.S. LEVEL: FACTORS DRIVING CAGR IN PREDICTIVE MAINTENANCE MARKET
4.7.2 CONCLUSION
4.8 MARKET SIZE FOR GLOBAL PREDICTIVE MAINTENANCE MARKET
4.9 MARKET SIZE FOR PREDICTIVE MAINTENANCE MARKET, BY REGION
4.1 U.S. MARKET SIZE FOR TIRE PRESSURE MONITORING SYSTEMS RELATED TO LOGISTICS AND THEIR VEHICLE TYPE CONSIDERING FY 2022- 2034
4.10.1 U.S. MARKET SIZE OF TIRE PRESSURE MONITORING SYSTEM IN LOGISTICS MARKET
4.10.2 U.S. MARKET SIZE OF TIRE PRESSURE MONITORING SYSTEM FOR LOGISTIC VEHICLE MARKET
4.11 ISSUE FACED BY FLEETS AND OTHER PLAYERS
4.12 COMPANY COMPARATIVE ANALYSIS
5 MARKET OVERVIEW
5.1 DRIVERS
5.1.1 GROWING ADOPTION OF IOT IN INDUSTRIAL OPERATIONS
5.1.2 GROWING DEMAND FOR BIG DATA AND ANALYTICS SOLUTIONS
5.1.3 STRINGENT VEHICLE SAFETY REGULATIONS
5.1.4 INCREASED ADOPTION OF TELEMATICS IN FLEET MANAGEMENT
5.2 RESTRAINTS
5.2.1 HIGH COSTS OF SENSOR INSTALLATION AND MONITORING
5.2.2 DATA PRIVACY AND SECURITY CONCERNS
5.3 OPPORTUNITIES
5.3.1 GROWING DEMAND FOR SUSTAINABILITY
5.3.2 COLLABORATION WITH TIRE MANUFACTURERS FOR SMART TIRES
5.3.3 AI-POWERED PREDICTIVE MAINTENANCE PLATFORMS
5.4 CHALLENGES
5.4.1 INTEGRATING HIGH-QUALITY DATA FOR AUTOMOTIVE PREDICTIVE MAINTENANCE
5.4.2 COMPLEXITY OF SYSTEMS IN THE AUTOMOTIVE INDUSTRY
6 U.S. PREDICTIVE MAINTENANCE MARKET, BY OFFERING
6.1 OVERVIEW
6.2 SOLUTION
6.2.1 SOLUTION, BY TYPE
6.2.1.1 INTEGRATED
6.2.1.2 STAND-ALONE
6.3 SERVICES
6.3.1 SERVICES, BY TYPE
6.3.1.1 MANAGED SERVICES
6.3.1.2 PROFESSIONAL SERVICES
6.3.1.2.1 PROFESSIONAL SERVICES, BY TYPE
6.3.1.2.2 SYSTEM INTEGRATION
6.3.1.2.3 SUPPORT & MAINTENANCE
6.3.1.2.4 CONSULTING
7 US PREDICTIVE MAINTENANCE MARKET, BY DEPLOYMENT MODE
7.1 OVERVIEW
7.2 CLOUD
7.2.1 CLOUD, BY TYPE
7.2.1.1 PUBLIC CLOUD
7.2.1.2 PRIVATE CLOUD
7.2.1.3 HYBRID CLOUD
7.3 ON PREMISE
8 U.S. PREDICTIVE MAINTENANCE MARKET, BY APPLICATION
8.1 OVERVIEW
8.2 TRANSMISSION CHECK-UP
8.3 OIL CHANGE
8.4 TIRE INSPECTION
8.5 COOLANT REPLACEMENT
8.6 BRAKE
8.7 ENGINE AIR FILTER
8.8 CABIN FILTER
8.9 BELT CHANGE
8.1 OTHERS
9 U.S. PREDICTIVE MAINTENANCE MARKET, BY ENTERPRISE SIZE
9.1 OVERVIEW
9.2 LARGE SIZE ORGANIZATIONS
9.3 SMALL & MEDIUM SIZED ORGANIZATION
10 U.S. PREDICTIVE MAINTENANCE MARKET, BY VEHICLE TYPE
10.1 OVERVIEW
10.2 PASSENGER CAR
10.2.1 SUV
10.2.2 SEDAN
10.2.3 SPORT CAR
10.2.4 COUPE
10.2.5 HATCHBACK
10.2.6 CONVERTIBLE
10.2.7 OTHERS
10.2.7.1 LARGE FLEET (MORE THAN 500)
10.2.7.2 MEDIUM FLEET(100-500)
10.2.7.3 SMALL FLEET(LESS THAN 100)
10.3 COMMERCIAL VEHICLE
10.3.1 LIGHT COMMERCIAL VEHICLE (LCV)
10.3.1.1 VANS
10.3.1.2 PICK UP TRUCK
10.3.1.3 TOW TRUCK
10.3.1.4 MINI BUS
10.3.1.5 OTHERS
10.3.2 MEDIUM AND HEAVY COMMERCIAL VEHICLE(HCV)
10.3.2.1 TRUCK
10.3.2.1.1 HEAVY TRUCKS (ABOVE 26,000 POUNDS)
10.3.2.1.1.1 REFRIGERATOR TRUCK
10.3.2.1.1.2 CONCRETE TRANSPORT TRUCK
10.3.2.1.1.3 TANKER TRUCK
10.3.2.1.1.4 OTHERS
10.3.2.1.2 MEDIUM TRUCKS (14,001-26,000 POUNDS)
10.3.2.1.2.1 BOX TRUCK
10.3.2.1.2.2 FLATBED TRUCK
10.3.2.1.2.3 DELIVERY TRUCK
10.3.2.1.2.4 OTHERS
10.3.2.1.3 BUSES
10.3.2.1.4 COACHES
10.4 OFF ROAD VEHICLE
11 U.S. PREDICTIVE MAINTENANCE MARKET, BY END USER
11.1 OVERVIEW
11.2 FLEET OWNERS
11.3 FMS
11.4 MANUFACTURERS
11.5 FMC
11.6 INDIVIDUAL
11.7 OTHERS
12 U.S. PREDICTIVE MAINTENANCE MARKET, COMPANY LANDSCAPE
12.1 COMPANY SHARE ANALYSIS: U.S.
13 U.S. TPMS MARKET, COMPANY LANDSCAPE
13.1 COMPANY SHARE ANALYSIS: U.S.
14 U.S. TELEMATICS MARKET, COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: U.S
15 QUESTIONNAIRE
16 RELATED REPORTS
Lista de Tablas
TABLE 1 GLOBAL PREDICTIVE MAINTENANCE MARKET, BY GEOGRAPHY, 2022- 2031 (USD MILLION)
TABLE 2 GLOBAL PREDICTIVE MAINTENANCE MARKET, BY REGION, 2022- 2031 (USD MILLION)
TABLE 3 U.S. TIRE PRESSURE MONITORING SYSTEM IN LOGISTICS MARKET, 2022 -2034, (USD MILLION)
TABLE 4 U.S. TIRE PRESSURE MONITORING SYSTEM IN LOGISTICS MARKET, BY VEHICLE TYPE, 2022 -2034, (USD MILLION)
TABLE 5 NHTSA REGULATIONS ON VEHICLE SAFETY
TABLE 6 U.S. PREDICTIVE MAINTENANCE MARKET, BY OFFERING, 2022-2031 (USD MILLION)
TABLE 7 U.S. SOLUTION IN PREDICTIVE MAINTENANCE MARKET, BY TYPE, 2022-2031 (USD MILLION))
TABLE 8 U.S. SERVICES IN PREDICTIVE MAINTENANCE MARKET, BY TYPE, 2022-2031 (USD MILLION)
TABLE 9 U.S. PROFESSIONAL SERVICES IN PREDICTIVE MAINTENANCE MARKET, BY TYPE, 2022-2031 (USD MILLION)
TABLE 10 U.S. PREDICTIVE MAINTENANCE MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD MILLION)
TABLE 11 U.S. CLOUD IN PREDICTIVE MAINTENANCE MARKET, BY TYPE, 2022-2031 (USD MILLION)
TABLE 12 U.S. PREDICTIVE MAINTENANCE MARKET, BY APPLICATION, 2022-2031 (USD MILLION)
TABLE 13 U.S. PREDICTIVE MAINTENANCE MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD MILLION)
TABLE 14 U.S. PREDICTIVE MAINTENANCE MARKET, VEHICLE TYPE, 2022-2031 (USD MILLION)
TABLE 15 U.S. PASSENGER CAR IN PREDICTIVE MAINTENANCE MARKET, BODY STYLE, 2022-2031 (USD MILLION))
TABLE 16 U.S. PASSENGER CAR IN PREDICTIVE MAINTENANCE MARKET, BY FLEET SIZE, 2022-2031 (USD MILLION))
TABLE 17 U.S. COMMERCIAL VEHICLE IN PREDICTIVE MAINTENANCE MARKET, BY TYPE, 2022-2031 (USD MILLION))
TABLE 18 U.S. LIGHT COMMERCIAL VEHICLE (LCV) IN PREDICTIVE MAINTENANCE MARKET, BY TYPE, 2022-2031 (USD MILLION))
TABLE 19 U.S. MEDIUM AND HEAVY COMMERCIAL VEHICLE (HCV) IN PREDICTIVE MAINTENANCE MARKET, BY TYPE, 2022-2031 (USD MILLION))
TABLE 20 U.S.TRUCK IN PREDICTIVE MAINTENANCE MARKET, BY TYPE, 2022-2031 (USD MILLION))
TABLE 21 U.S.HEAVY TRUCK IN PREDICTIVE MAINTENANCE MARKET, BY TYPE, 2022-2031 (USD MILLION)
TABLE 22 U.S.MEDIUM TRUCK IN PREDICTIVE MAINTENANCE MARKET, BY TYPE, 2022-2031 (USD MILLION))
TABLE 23 U.S. PREDICTIVE MAINTENANCE MARKET, END USER, 2022-2034 (USD MILLION)
Lista de figuras
FIGURE 1 U.S. PREDICTIVE MAINTENANCE MARKET: SEGMENTATION
FIGURE 2 U.S. PREDICTIVE MAINTENANCE MARKET: DATA TRIANGULATION
FIGURE 3 U.S. PREDICTIVE MAINTENANCE MARKET: DROC ANALYSIS
FIGURE 4 U.S. PREDICTIVE MAINTENANCE MARKET: GLOBAL VS REGIONAL MARKET ANALYSIS
FIGURE 5 U.S. PREDICTIVE MAINTENANCE MARKET: COMPANY RESEARCH ANALYSIS
FIGURE 6 U.S. PREDICTIVE MAINTENANCE MARKET: INTERVIEW DEMOGRAPHICS
FIGURE 7 U.S. PREDICTIVE MAINTENANCE MARKET: DBMR MARKET POSITION GRID
FIGURE 8 U.S. TPMS MARKET: DBMR MARKET POSITION GRID
FIGURE 9 U.S. TELEMATICS MARKET: DBMR MARKET POSITION GRID
FIGURE 10 U.S. PREDICTIVE MAINTENANCE MARKET: VENDOR SHARE ANALYSIS
FIGURE 11 U.S. TPMS MARKET: VENDOR SHARE ANALYSIS
FIGURE 12 U.S. TELEMATICS MARKET: VENDOR SHARE ANALYSIS
FIGURE 13 U.S. PREDICTIVE MAINTENANCE MARKET: MULTIVARIATE MODELING
FIGURE 14 U.S. PREDICTIVE MAINTENANCE MARKET: OFFERING TIMELINE CURVE
FIGURE 15 U.S. PREDICTIVE MAINTENANCE MARKET: MARKET APPLICATION COVERAGE GRID
FIGURE 16 U.S. PREDICTIVE MAINTENANCE MARKET: SEGMENTATION
FIGURE 17 TWO SEGMENTS COMPRISE THE U.S. PREDICTIVE MAINTENANCE MARKET, BY TYPE (2023)
FIGURE 18 EXECUTIVE SUMMARY
FIGURE 19 STRATEGIC DECISIONS
FIGURE 20 GROWING ADOPTION OF IOT IN INDUSTRIAL OPERATIONS IS EXPECTED TO DRIVE THE U.S. PREDICTIVE MAINTENANCE MARKET DURING THE FORECAST PERIOD OF 2024 TO 2031
FIGURE 21 TYPE SEGMENT IS EXPECTED TO ACCOUNT FOR THE LARGEST SHARE OF THE U.S. PREDICTIVE MAINTENANCE MARKET IN 2024 & 2031
FIGURE 22 PORTERS FIVE FORCES U.S. PREDICTIVE MAINTENANCE MARKET
FIGURE 23 PORTERS FIVE FORCES U.S. TPMS MARKET
FIGURE 24 PORTERS FIVE FORCES U.S. TELEMATICS MARKET
FIGURE 25 VALUE CHAIN ANALYSIS FOR THE U.S. PREDICTIVE MAINTENANCE MARKET
FIGURE 26 OPPORTUNITIES AND CHALLENGES IN THE VALUE CHAIN
FIGURE 27 FACTORS FOR DRIVING CAGR IN U.S. PREDICTIVE MAINTENANCE MARKET
FIGURE 28 DBMR COMPETITIVE ANALYSIS U.S. PREDICTIVE MAINTENANCE MARKET
FIGURE 29 DBMR COMPETITIVE ANALYSIS U.S. TELEMATICS MARKET
FIGURE 30 DBMR COMPETITIVE ANALYSIS U.S. TPMS MARKET
FIGURE 31 U.S. PREDICTIVE MAINTENANCE MARKET: BY OFFERING, 2023
FIGURE 32 U.S. PREDICTIVE MAINTENANCE MARKET: BY DEPLOYMENT MODE, 2023
FIGURE 33 U.S. PREDICTIVE MAINTENANCE MARKET: BY APPLICATION, 2023
FIGURE 34 U.S. PREDICTIVE MAINTENANCE MARKET: BY ENTERPRISE SIZE, 2023
FIGURE 35 U.S. PREDICTIVE MAINTENANCE MARKET: VEHICLE TYPE, 2023
FIGURE 36 U.S. PREDICTIVE MAINTENANCE MARKET: END USER, 2023
FIGURE 37 U.S. PREDICTIVE MAINTENANCE MARKET: COMPANY SHARE 2023 (%)
FIGURE 38 U.S. TPMS MARKET: COMPANY SHARE 2023 (%)
FIGURE 39 U.S. TELEMATICS MARKET: COMPANY SHARE 2023 (%)
Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.