Global Neuromorphic Computing Market
Tamaño del mercado en miles de millones de dólares
Tasa de crecimiento anual compuesta (CAGR) :
%

![]() |
2025 –2032 |
![]() |
USD 28.30 Billion |
![]() |
USD 297.72 Billion |
![]() |
|
![]() |
Segmentación del mercado global de computación neuromórfica, por oferta (hardware y software), implementación ( computación perimetral y computación en la nube ), aplicaciones ( reconocimiento de imágenes , procesamiento de datos, reconocimiento de señales, detección de objetos y minería de datos), usuario final (aeroespacial y defensa, TI y telecomunicaciones, medicina, automoción, industria y otros): tendencias de la industria y pronóstico hasta 2032
Análisis del mercado de la computación neuromórfica
El mercado de la computación neuromórfica está experimentando un crecimiento significativo, impulsado por los avances en inteligencia artificial , aprendizaje automático y la creciente demanda de soluciones informáticas energéticamente eficientes. La computación neuromórfica imita la estructura neuronal y el funcionamiento del cerebro humano, lo que permite un procesamiento y una toma de decisiones más rápidos, a la vez que reduce el consumo energético. Esta tecnología se aplica en diversas industrias, como la aeroespacial, la defensa, la automoción, la medicina y las TI, para tareas como el reconocimiento de imágenes, el procesamiento de señales y la minería de datos. Desarrollos recientes, como el lanzamiento de hardware y software neuromórficos innovadores por parte de empresas como Intel, IBM y Qualcomm, han acelerado el crecimiento del mercado. Además, las alianzas y colaboraciones destinadas a mejorar las capacidades neuromórficas impulsan aún más el mercado. La adopción de la computación neuromórfica está impulsada por su potencial para revolucionar la computación de borde y el procesamiento en tiempo real en sistemas complejos. Con la investigación y el desarrollo continuos, el mercado está preparado para un crecimiento exponencial en los próximos años, transformando la forma en que las industrias abordan las aplicaciones con uso intensivo de datos.
Tamaño del mercado de la computación neuromórfica
El tamaño del mercado global de computación neuromórfica se valoró en USD 28.30 mil millones en 2024 y se proyecta que alcance los USD 297.72 mil millones para 2032, con una CAGR del 34,20% durante el período de pronóstico de 2025 a 2032. Además de la información sobre escenarios de mercado como el valor de mercado, la tasa de crecimiento, la segmentación, la cobertura geográfica y los principales actores, los informes de mercado seleccionados por Data Bridge Market Research también incluyen un análisis experto en profundidad, producción y capacidad por empresa representadas geográficamente, diseños de red de distribuidores y socios, análisis detallado y actualizado de las tendencias de precios y análisis del déficit de la cadena de suministro y la demanda.
Tendencias del mercado de la computación neuromórfica
“ Enfoque en la eficiencia energética”
En medio de la creciente preocupación por el medio ambiente, la computación neuromórfica cobra cada vez mayor relevancia por su enfoque de eficiencia energética para cálculos complejos. A diferencia de los sistemas informáticos tradicionales, que consumen una cantidad considerable de energía para tareas como el procesamiento de datos y las operaciones de IA, los sistemas neuromórficos imitan la estructura neuronal del cerebro humano, lo que les permite realizar tareas complejas con un consumo mínimo de energía. Esta característica ha hecho que la tecnología sea muy atractiva para aplicaciones en sectores que priorizan la sostenibilidad, como la salud, la automoción y las ciudades inteligentes. Al reducir el consumo de energía y mantener una alta potencia de procesamiento, la computación neuromórfica se alinea con los objetivos globales de sostenibilidad y satisface la demanda de tecnologías más ecológicas. A medida que las organizaciones buscan soluciones innovadoras para reducir su huella de carbono, la computación neuromórfica se perfila como un factor clave para el avance de la sostenibilidad.
Alcance del informe y segmentación del mercado de computación neuromórfica
Atributos |
Perspectivas clave del mercado de la computación neuromórfica |
Segmentos cubiertos |
|
Países cubiertos |
EE. UU., Canadá y México en América del Norte, Alemania, Francia, Reino Unido, Países Bajos, Suiza, Bélgica, Rusia, Italia, España, Turquía, Resto de Europa en Europa, China, Japón, India, Corea del Sur, Singapur, Malasia, Australia, Tailandia, Indonesia, Filipinas, Resto de Asia-Pacífico (APAC) en Asia-Pacífico (APAC), Arabia Saudita, Emiratos Árabes Unidos, Sudáfrica, Egipto, Israel, Resto de Medio Oriente y África (MEA) como parte de Medio Oriente y África (MEA), Brasil, Argentina y Resto de Sudamérica como parte de Sudamérica |
Actores clave del mercado |
Intel Corporation (EE. UU.), IBM (EE. UU.), BrainChip Inc. (Australia), Qualcomm Technologies, Inc. (EE. UU.), Hewlett Packard Enterprise Development LP (EE. UU.), SAMSUNG (Corea del Sur), HRL Laboratories, LLC (EE. UU.), General Vision Inc. (EE. UU.), ABR (Singapur), Vicarious (EE. UU.), Numenta (EE. UU.), Aspinity (EE. UU.), BrainCo, Inc. (EE. UU.), Bitbrain Technologies (España), Linux Kernel Organization, Inc. (EE. UU.), NEXTMIND SRL (Francia), Cognixion (Canadá), NeuroPace, Inc. (EE. UU.), MindMaze (Suiza), Innatera Nanosystems BV (Países Bajos) |
Oportunidades de mercado |
|
Conjuntos de información de datos de valor añadido |
Además de los conocimientos sobre escenarios de mercado como el valor de mercado, la tasa de crecimiento, la segmentación, la cobertura geográfica y los principales actores, los informes de mercado seleccionados por Data Bridge Market Research también incluyen un análisis profundo de expertos, producción y capacidad por empresa representadas geográficamente, diseños de red de distribuidores y socios, análisis detallado y actualizado de tendencias de precios y análisis deficitario de la cadena de suministro y la demanda. |
Definición del mercado de computación neuromórfica
La computación neuromórfica es un enfoque informático de vanguardia que imita la estructura y la funcionalidad del cerebro humano. Utiliza redes neuronales artificiales y hardware diseñado para emular neuronas y sinapsis biológicas, lo que permite el procesamiento eficiente y paralelo de datos complejos. Esta tecnología es especialmente eficaz para gestionar tareas como el reconocimiento de patrones, la toma de decisiones y el aprendizaje con un consumo mínimo de energía, lo que la hace ideal para aplicaciones en inteligencia artificial, robótica y edge computing. Al replicar la capacidad del cerebro para procesar información en tiempo real, la computación neuromórfica representa un avance significativo en el desarrollo de sistemas informáticos más inteligentes y energéticamente eficientes.
Dinámica del mercado de la computación neuromórfica
Conductores
- Creciente adopción de la informática de borde
La creciente demanda de procesamiento de datos en tiempo real en el borde ha impulsado significativamente la adopción de la computación neuromórfica. A diferencia de los sistemas informáticos tradicionales, las arquitecturas neuromórficas destacan en la gestión de tareas como el reconocimiento de imágenes, el procesamiento del habla y la toma de decisiones con mayor velocidad y eficiencia energética. Esta capacidad es especialmente valiosa en aplicaciones como vehículos autónomos, dispositivos IoT y automatización industrial, donde el procesamiento instantáneo de datos es crucial. Al permitir respuestas de baja latencia y reducir el consumo de energía, la computación neuromórfica se alinea con la creciente necesidad de soluciones de computación en el borde más rápidas y sostenibles. A medida que las industrias priorizan la eficiencia y el procesamiento en tiempo real, esta tecnología se está convirtiendo en un motor clave del crecimiento del mercado.
- Aumento de la demanda en los sectores de la automoción y la salud
La creciente adopción de sistemas autónomos, como los coches autónomos y los dispositivos médicos inteligentes, ha impulsado significativamente la demanda de computación neuromórfica. La capacidad de esta tecnología para procesar datos complejos en tiempo real, con un consumo mínimo de energía, es ideal para aplicaciones autónomas donde la toma de decisiones y la adaptabilidad son cruciales. Los sistemas neuromórficos permiten a los vehículos responder a entornos dinámicos y a los dispositivos médicos tomar decisiones instantáneas y precisas, garantizando así la seguridad y la eficiencia. A medida que las industrias se vuelcan cada vez más hacia la automatización, la computación neuromórfica desempeña un papel fundamental en la mejora de la funcionalidad y la fiabilidad de estos sistemas, impulsando aún más su crecimiento en el mercado.
Oportunidades
- Crecimiento de las aplicaciones de IA y aprendizaje automático
La integración de sistemas neuromórficos en plataformas de inteligencia artificial (IA) y aprendizaje automático (AA) representa una importante oportunidad de mercado. Al aprovechar la computación neuromórfica, las plataformas de IA y AA pueden mejorar la eficiencia y la precisión de tareas como la conducción autónoma, la robótica y el análisis predictivo. La capacidad de los sistemas neuromórficos para procesar datos con rapidez y un consumo mínimo de energía mejora la capacidad de toma de decisiones en tiempo real, lo que proporciona mejores resultados en entornos dinámicos. A medida que las industrias buscan impulsar la automatización y las innovaciones impulsadas por la IA, la demanda de tecnologías de computación neuromórfica seguirá creciendo, lo que generará grandes oportunidades de expansión del mercado.
- Integración en tecnología portátil
La integración de chips neuromórficos en rastreadores de actividad física, monitores de salud y wearables de realidad aumentada (RA) presenta una prometedora oportunidad de mercado. Estos dispositivos requieren procesamiento de datos en tiempo real para un seguimiento preciso, información de salud personalizada y experiencias de usuario inmersivas. Los chips neuromórficos, con su arquitectura inspirada en el cerebro, ofrecen capacidades computacionales de bajo consumo y alta velocidad, lo que permite la monitorización continua y la retroalimentación inmediata sin agotar la batería. Este avance es especialmente crucial en la monitorización de la salud, donde el análisis en tiempo real puede detectar anomalías y mejorar los resultados del usuario. A medida que el mercado de wearables crece, impulsado por los entusiastas del fitness y las necesidades de la salud, la adopción de la computación neuromórfica abrirá nuevas posibilidades, impulsando la expansión del mercado.
Restricciones/Desafíos
- Falta de mano de obra calificada
La naturaleza especializada de la tecnología de computación neuromórfica exige ingenieros altamente cualificados con experiencia en campos como la inteligencia artificial, la neurociencia y el diseño de hardware. Dado que la tecnología aún está en evolución, existe un número limitado de profesionales con la experiencia necesaria para desarrollar, implementar y optimizar sistemas neuromórficos eficazmente. Esta escasez de talento cualificado supone un reto importante para las empresas que buscan adoptar y escalar soluciones de computación neuromórfica. La falta de experiencia disponible puede provocar retrasos en la innovación y un aumento de los costes de investigación y desarrollo, lo que en última instancia obstaculiza el crecimiento y la expansión general del mercado.
- Altos costos de desarrollo
El desarrollo de chips y sistemas neuromórficos implica tecnologías complejas y de vanguardia que requieren importantes inversiones en investigación y desarrollo (I+D). Estos elevados costes de I+D contribuyen al gasto total de producción de soluciones neuromórficas, lo que dificulta su adopción generalizada, especialmente entre empresas pequeñas y startups. La necesidad de materiales especializados, procesos de fabricación avanzados y largos ciclos de desarrollo incrementan aún más la carga financiera. En consecuencia, este elevado coste puede dificultar la adopción masiva de tecnologías de computación neuromórfica, limitando su accesibilidad y ralentizando el ritmo de innovación en diversas industrias que podrían beneficiarse de esta tecnología.
Este informe de mercado proporciona detalles sobre los últimos desarrollos, regulaciones comerciales, análisis de importación y exportación, análisis de producción, optimización de la cadena de valor, cuota de mercado, impacto de los actores del mercado nacional y local, análisis de oportunidades en términos de nuevas fuentes de ingresos, cambios en las regulaciones del mercado, análisis estratégico del crecimiento del mercado, tamaño del mercado, crecimiento de las categorías de mercado, nichos de aplicación y dominio, aprobaciones y lanzamientos de productos, expansiones geográficas e innovaciones tecnológicas en el mercado. Para obtener más información sobre el mercado, contacte con Data Bridge Market Research para obtener un informe analítico. Nuestro equipo le ayudará a tomar decisiones informadas para impulsar el crecimiento del mercado.
Alcance del mercado de la computación neuromórfica
El mercado está segmentado según la oferta, la implementación, las aplicaciones y el usuario final. El crecimiento de estos segmentos le permitirá analizar los segmentos con menor crecimiento en las industrias y brindar a los usuarios una valiosa visión general del mercado y perspectivas que les ayudarán a tomar decisiones estratégicas para identificar las aplicaciones clave del mercado.
Ofrenda
- Hardware
- Software
Despliegue
- Computación de borde
- Computación en la nube
Aplicaciones
- Reconocimiento de imágenes
- Proceso de datos
- Reconocimiento de señales
- Detección de objetos
- Minería de datos
Usuario final
- Aeroespacial y Defensa
- TI y telecomunicaciones
- Médico
- Automotor
- Industrial
- Otros
Análisis regional del mercado de computación neuromórfica
Se analiza el mercado y se proporcionan información sobre el tamaño del mercado y las tendencias por país, oferta, implementación, aplicaciones y usuario final como se menciona anteriormente.
Los países cubiertos en el informe de mercado son EE. UU., Canadá y México en América del Norte, Alemania, Francia, Reino Unido, Países Bajos, Suiza, Bélgica, Rusia, Italia, España, Turquía, Resto de Europa en Europa, China, Japón, India, Corea del Sur, Singapur, Malasia, Australia, Tailandia, Indonesia, Filipinas, Resto de Asia-Pacífico (APAC) en Asia-Pacífico (APAC), Arabia Saudita, Emiratos Árabes Unidos, Sudáfrica, Egipto, Israel, Resto de Medio Oriente y África (MEA) como parte de Medio Oriente y África (MEA), Brasil, Argentina y Resto de América del Sur como parte de América del Sur.
Norteamérica domina el mercado de la computación neuromórfica, impulsado principalmente por la presencia de importantes fabricantes de chips neuromórficos en la región. La avanzada infraestructura tecnológica de la región y su fuerte enfoque en la innovación refuerzan aún más su dominio. Además, la creciente demanda de aplicaciones basadas en IA en sectores como el automotriz y el sanitario contribuye al liderazgo de la región en el mercado.
Se proyecta que Europa experimentará un crecimiento sustancial entre 2025 y 2032, impulsado por el aumento de la inversión en proyectos de computación neuromórfica. Se espera que el enfoque de la región en el avance de las tecnologías de IA y aprendizaje automático impulse un mayor desarrollo. A medida que se asignen más recursos a estas iniciativas, Europa fortalecerá su posición en el mercado de la computación neuromórfica.
La sección de países del informe también presenta los factores que impactan en cada mercado y los cambios en la regulación nacional que impactan las tendencias actuales y futuras del mercado. Datos como el análisis de la cadena de valor aguas abajo y aguas arriba, las tendencias técnicas, el análisis de las cinco fuerzas de Porter y los estudios de caso son algunos de los indicadores utilizados para pronosticar el escenario del mercado en cada país. Asimismo, se considera la presencia y disponibilidad de marcas globales y los desafíos que enfrentan debido a la alta o escasa competencia de marcas locales y nacionales, el impacto de los aranceles nacionales y las rutas comerciales, al proporcionar un análisis de pronóstico de los datos nacionales.
Cuota de mercado de la computación neuromórfica
El panorama competitivo del mercado ofrece detalles por competidor. Se incluye información general de la empresa, sus estados financieros, ingresos generados, potencial de mercado, inversión en investigación y desarrollo, nuevas iniciativas de mercado, presencia global, plantas de producción, capacidad de producción, fortalezas y debilidades de la empresa, lanzamiento de productos, alcance y variedad de productos, y dominio de las aplicaciones. Los datos anteriores se refieren únicamente al enfoque de mercado de las empresas.
Los líderes del mercado de computación neuromórfica que operan en el mercado son:
- Intel Corporation (EE. UU.)
- IBM (EE.UU.)
- BrainChip Inc. (Australia)
- Qualcomm Technologies, Inc. (EE. UU.)
- Hewlett Packard Enterprise Development LP (EE. UU.)
- SAMSUNG (Corea del Sur)
- HRL Laboratories, LLC (EE. UU.)
- General Vision Inc. (EE. UU.)
- ABR (Singapur)
- Vicarious (EE. UU.)
- Numenta (EE. UU.)
- Aspinity (EE. UU.)
- BrainCo, Inc. (EE. UU.)
- Bitbrain Technologies (España)
- Organización del Kernel de Linux, Inc. (EE. UU.)
- NEXTMIND SRL (Francia)
- Cognixion (Canadá)
- NeuroPace, Inc. (EE. UU.)
- MindMaze (Suiza)
- Innatera Nanosystems BV (Países Bajos)
Últimos avances en el mercado de la computación neuromórfica
- En febrero de 2024, SynSense (China) adquirió iniVation AG (Suiza) para convertirse en un proveedor líder de tecnología neuromórfica. La fusión combina la experiencia de SynSense en procesamiento de ultrabajo consumo con las capacidades de detección de visión neuromórfica de iniVation, creando así el Grupo SynSense. Se espera que esta integración mejore los sistemas de visión inteligente en diversas industrias, como la electrónica de consumo, la robótica, la aeroespacial y la automoción, posicionando a la empresa como un actor clave en el avance de la tecnología neuromórfica.
- En marzo de 2024, NXP Semiconductors (Países Bajos) y NVIDIA Corporation (EE. UU.) colaboraron para impulsar la implementación de IA mediante la integración del kit de herramientas TAO de NVIDIA con los dispositivos edge de NXP. Esta colaboración permite que los modelos de IA preentrenados de NVIDIA se ejecuten eficientemente en las unidades de procesamiento neuronal (NPU) de NXP en procesadores i.MX 93, lo que facilita un desarrollo e implementación más rápidos de aplicaciones basadas en IA en múltiples industrias.
- En abril de 2024, Intel presentó el sistema neuromórfico más grande del mundo, denominado Hala Point, que funciona con el procesador Loihi 2 de Intel. Este sistema está diseñado para impulsar la investigación en IA inspirada en el cerebro y superar los desafíos de las tecnologías de IA actuales. En comparación con el sistema anterior de Intel, Pohoiki Springs, Hala Point multiplica significativamente la capacidad neuronal por más de diez, ofreciendo un rendimiento aproximadamente doce veces superior. Puede gestionar hasta 20 cuatrillones de operaciones por segundo, alcanzando una eficiencia de más de 15 billones de operaciones de 8 bits por segundo por vatio, al tiempo que ejecuta redes neuronales profundas estándar.
- En octubre de 2023, IBM presentó su nueva arquitectura de chip, NorthPole, diseñada específicamente para la inferencia neuronal, cuyos resultados se publicaron en Science. NorthPole puede ejecutar tareas de reconocimiento de imágenes basadas en IA de forma más eficiente y con menor latencia en comparación con los chips existentes. Su rendimiento es 4000 veces más rápido que el de su predecesor, el chip TrueNorth. Desarrollado en el laboratorio de IBM Research en California, el chip NorthPole revolucionará la escalabilidad de los sistemas avanzados de hardware de IA.
- En diciembre de 2022, Samsung Electronics Co., Ltd. y NAVER Corporation, operador del motor de búsqueda Naver, unieron fuerzas para desarrollar soluciones de semiconductores optimizadas para modelos de inteligencia artificial (IA) a gran escala. Al combinar su experiencia en hardware y software, las empresas buscan acelerar el procesamiento de grandes cargas de trabajo de IA, mejorando la eficiencia y la escalabilidad de los sistemas de IA para aplicaciones avanzadas.
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.