Global Natural Language Processing Nlp Healthcare Life Sciences Market
Tamaño del mercado en miles de millones de dólares
Tasa de crecimiento anual compuesta (CAGR) : %
Período de pronóstico |
2024 –2031 |
Tamaño del mercado (año base) |
USD 2.11 Billion |
Tamaño del mercado (año de pronóstico) |
USD 8.48 Billion |
Tasa de crecimiento anual compuesta (CAGR) |
|
Jugadoras de los principales mercados |
|
>El mercado global de procesamiento del lenguaje natural (PLN) en el sector sanitario y de las ciencias biológicas se valoró en 2110 millones de dólares en 2023. Se prevé que el tamaño del mercado crezca a una tasa compuesta anual del 19 % y alcance los 8480 millones de dólares en 2031.
Mercado global de procesamiento del lenguaje natural (PLN) para la atención médica y las ciencias biológicas: descripción general de la industria
El sector de la salud y las ciencias biológicas produce una enorme cantidad de datos, incluidos registros médicos electrónicos, informes de ensayos clínicos, datos de investigación e informes de pacientes. Según el Foro Económico Mundial, la industria de la salud genera más del 30% de los datos generados en todo el mundo, la mayoría de los cuales no se utilizan. La incorporación del procesamiento del lenguaje natural (PLN) en el sector de la salud desempeña un papel enorme en el procesamiento de los datos médicos que conducen a la innovación y las invenciones que potencialmente pueden convertirse en la base para descubrir tratamientos y terapias, fármacos y medicamentos que pueden resultar una cura eficaz para diversas afecciones de salud. El PLN ha transformado por completo la industria de la salud y las ciencias biológicas con su enfoque integral orientado al análisis de datos. Ahora, no hay registros de salud y ciencias biológicas que no se utilicen con el análisis dinámico de datos no estructurados, el análisis de sentimientos, el reconocimiento de entidades con nombre y el descubrimiento de fármacos del PLN para extraer información valiosa que ayude a mejorar drásticamente la participación del paciente y, en consecuencia, el mercado global de la salud y las ciencias biológicas mediante PLN se está expandiendo.
El informe de investigación de mercado de Data Bridge Market Research proporciona detalles de los desarrollos recientes, regulaciones comerciales, participación de mercado, tendencias del mercado sobre la base de sus segmentaciones y análisis regionales, impacto de los actores del mercado, análisis de oportunidades en términos de bolsillos de ingresos emergentes, regulaciones del mercado, análisis estratégico del crecimiento del mercado, tamaño del mercado, crecimientos del mercado por categoría, nichos de aplicación y dominio, aprobaciones de productos, lanzamientos de productos, expansiones geográficas e innovaciones tecnológicas en el mercado. Para obtener más información sobre el mercado, comuníquese con el equipo de analistas expertos de Data Bridge Market Research. Nuestro equipo lo ayudará a tomar decisiones de mercado informadas para lograr el crecimiento empresarial.
Tamaño del mercado global de procesamiento del lenguaje natural (PLN) en el sector sanitario y de las ciencias biológicas
Métricas del informe de mercado de ciencias biológicas de atención médica de PNL |
|
Período de pronóstico |
2024-2031 |
Año base |
2023 |
Año histórico |
2022 (Personalizable 2016-2021) |
Unidad de medida |
Miles de millones de dólares |
Puntero de datos |
Información sobre el mercado: valor de mercado, tasa de crecimiento, segmentos de mercado, cobertura geográfica, actores del mercado y escenario del mercado, análisis en profundidad de expertos, epidemiología de pacientes, análisis de cartera, análisis de precios y marco regulatorio. |
La convergencia de la PNL y la atención médica y las ciencias biológicas ha traído consigo una evolución en la medicina al utilizar los datos en beneficio del sector. El crecimiento exponencial de los datos de atención médica está acelerando la necesidad de soluciones de PNL que puedan ayudar a gestionar este mar de datos no estructurados para extraer información valiosa. Las innovaciones en curso en IA y aprendizaje automático están ayudando a desarrollar capacidades y la precisión de las aplicaciones de PNL, lo que fomenta aún más la adopción de tecnologías de PNL para potenciar la investigación y el desarrollo en el ámbito de la atención médica. La interconexión de la PNL y la atención médica es una bendición para los proveedores de servicios de atención médica que adaptan la atención al paciente y los servicios de atención médica para generar el crecimiento del mercado. Databridge Market Research se sumergió en un análisis exhaustivo del mercado y reveló que los mercados globales de procesamiento del lenguaje natural PNL para la atención médica y las ciencias biológicas están aumentando a una CAGR del 3,64 %. El tamaño del mercado está valorado en 2110 millones de dólares en 2023 y se espera que crezca hasta 8480 millones de dólares en 2031.
Dinámica del mercado de las ciencias biológicas y la atención sanitaria con PNL
Factores impulsores del crecimiento del mercado de ciencias biológicas de la atención médica mediante PNL
Organización de registros médicos electrónicos (EHR) para su posterior análisis
Los registros médicos electrónicos (EHR) que utilizan las organizaciones de atención médica generan una gran cantidad de datos relacionados con los pacientes que se vuelven difíciles de estructurar, almacenar y analizar. Estos registros electrónicos generalmente incluyen informes médicos, historias clínicas de pacientes y otros tipos de datos. No solo es importante organizar y examinar estos datos, sino que también es igualmente importante el fácil acceso a ellos. Las tecnologías de procesamiento del lenguaje natural (PLN) que incluyen documentación clínica, reconocimiento de voz, investigación de minería de datos y soporte de decisiones clínicas son altamente productivas en la extracción y el examen de datos médicos y en la garantía de su disponibilidad según el uso. Al aprovechar el PLN, los proveedores de atención médica pueden analizar e interpretar de manera más eficaz esta amplia gama de datos, lo que conduce a una mejor toma de decisiones clínicas, una atención personalizada al paciente y una mayor eficiencia operativa, impulsando así el crecimiento del mercado.
Análisis predictivo basado en inteligencia artificial (IA) y aprendizaje automático (ML)
La PNL, que es una subdivisión de la inteligencia artificial , está equipada con modelos estadísticos y analíticos que desempeñan un papel en la identificación de tendencias y patrones. Cuando la PNL en el ámbito de la atención sanitaria se alimenta de datos complejos, los estructura para realizar un análisis exhaustivo de los registros de los pacientes. En otras palabras, ejecuta un análisis predictivo de los datos relacionados con el paciente que revela las condiciones de salud actuales y el nivel de efecto en el cuerpo, además de ayudar a prever las dolencias y enfermedades a las que es vulnerable un paciente. Estas tecnologías permiten extraer información útil, identificar patrones y pronosticar resultados a partir de conjuntos de datos muy grandes para tomar decisiones clínicas más informadas y mejores resultados para los pacientes. La conclusión de este análisis predictivo es una mejor atención al paciente y medidas de prevención avanzadas para prevenir las condiciones de salud previstas. El análisis predictivo a través de la PNL es un importante contribuyente a la mejora de los servicios de atención al paciente y al fomento del crecimiento del mercado.
La automatización de los registros y la documentación de los pacientes reduce los costes sanitarios
La documentación clínica automatizada, impulsada por el procesamiento del lenguaje natural (PLN), agiliza la gestión de los registros de los pacientes al convertir la información hablada o escrita en datos estructurados y procesables. Esta automatización reduce la carga de los profesionales sanitarios, minimiza los errores de entrada manual y garantiza que la información del paciente se registre de forma precisa y completa. Esta tecnología de automatización es una forma rentable, que facilita que los profesionales sanitarios dediquen más tiempo a la atención del paciente en lugar de a la administración, lo que conduce a una mayor precisión y, por lo tanto, a una mayor eficiencia general en el mantenimiento de los registros médicos. Con la automatización de estas tareas menores, los profesionales sanitarios disfrutan de una mayor rentabilidad y, al mismo tiempo, mejoran la calidad general de la atención al paciente. La automatización también permite la unificación de los registros sanitarios al cotejar todo el historial del paciente almacenado en la base de datos de otros médicos o centros sanitarios. El hecho de que la atención sanitaria se vuelva rentable gracias al PLN es un estímulo para el crecimiento de Global NLP Healthcare Life Sciences.
Oportunidades de crecimiento del mercado de ciencias biológicas en el ámbito de la atención sanitaria mediante PNL
Plan de tratamiento personalizado
NLP plays a key role in preparing an individualized and focused treatment plan. NLP’s ability to extract and unify patients’ data from various sources like electronic health records, clinical notes, and medical histories, which enables easy processing and identification of particular needs of patients, genetic factors, and health conditions. This helps healthcare providers prepare a treatment plan to suit patients’ needs. Devising a personalized treatment plan is an opportunity for doctors to create the most effective course of treatment of their patients and thereby, expand their patient base. For instance, NLP can highlight the patterns in patient history so that one could determine the drugs most likely to be effective or even identify possible side effects in a case similar to others. As such, NLP is supportive of precision medicine, where interventions will be more focused and more effective, hence improving treatment efficiency and patient outcome.
Integrating IOT in Wearables
Wearables incorporated with NLP powered by IoT enables capturing of real-time patient data. It helps monitor patients’ health remotely all throughout the day and allows healthcare professionals to record any complications and variations so that they can act immediately to prepare an action plan to prevent any such complexity in future.
Collaboration with Pharmaceutical and Biotech Companies
Collaborating with pharmaceutical and biotechnology companies to integrate Natural Language Processing (NLP) into drug discovery, clinical trials management, and pharmacovigilance processes drives efficiency and accelerates innovation in life sciences. NLP enhances the efficiency of clinical trials by automating data extraction from medical records and patient reports, facilitating faster recruitment and analysis of trial data.
NLP Healthcare Life Science Market Size Growth Challenges
NLP in healthcare and health sciences are usually fed with specific group of terms that might not apply to any other command. Since human language keeps on evolving, the predefined group of terms might inaccurately structure the data. This usually happens when an NLP program has a built-in group of terms which might not match the unstructured data being examined. This challenge is easy to overcome with a certain level of human involvement.
NLP is capable of organizing and categorizing unstructured data. However, the tool can turn less-efficient faced by the complexity of human language. It might not be able to cope up with complicated language, dialect, and reference points. This, as a result, raises the chances of false positives and negatives.
NLP Healthcare Life Science Market Size Growth Restraints
Data Privacy and security concerns
In the application of NLP solutions, processing of sensitive patient information will give rise to drastic concerns about privacy laws and data security breaches. While healthcare providers are already exploring every opportunity to implement NLP technologies to the fullest, they will have to wade through rigid data protection laws under HIPAA in the US and the GDPR in Europe—both enacted for the purpose of maintaining the confidentiality of patients and stemming possible unauthorized access to personal health information. To accomplish all this, NLP systems should be fully security enabled. It should be guaranteed that this requirement is met by the application of robust methods for the encryption of data at rest and in transit, very strict access controls that limit access of data to only authorized users, and anonymization techniques to help guard against undesired exposure of the patient's identity. Aggregation of these security protocols can guarantee
Integration Complexity of NLP Systems
Integrating natural language processing (NLP) systems with existing healthcare IT infrastructure, including EHRs and clinical systems, can be complex and time-consuming. Healthcare organizations face challenges such as interoperability issues, data standardization, and compatibility with legacy systems when deploying NLP solutions. The integration process requires careful planning, customization, and coordination with IT teams to ensure seamless connectivity and functionality across different platforms. Moreover, training healthcare staff to effectively utilize NLP tools and interpret the insights generated poses additional implementation challenges.
NLP Healthcare Life Science Market Scope and Trends
NLP Healthcare Life Science Market Segmentations Overview |
|||
Segments Type |
Sub-Segments |
||
Component |
Standalone Solutions and Services |
||
NLP Type |
Rule-Based NLP, Statistical NLP, Hybrid NLP |
||
Deployment Mode |
On-Premises, Cloud |
||
Organization Size |
Large Enterprises, Small and Medium Enterprises |
||
|
|
||
End-User |
NLP for Physicians, NLP for Researchers, NLP for Patients, NLP for Clinical Operators |
Key Insight
- In the recent years, with the emergence of AI potential as a game changer in healthcare, by employing machine learning and NLP techniques to the effective processing of growing volumes of data boosts one of the most impressive applications known as automated clinical coding that streamlines the administration and management of clinical records in a hospital and medical research setting.
- There has been a surge of articles for automated clinical coding with deep learning (as the current mainstream approach of AI) in the last few years, as reviewed in recent surveys.
- Though the concerns are addressed and safety and efficacy of chat bots are pointed out, human aspects of healthcare cannot be replaced. In this way, chat bots can only become an integral part of the clinical practice to work in tandem with healthcare professionals, decreasing cost, enhancing workflow efficiencies, and thus improvising on outcomes for better results.
NLP Healthcare Life Science Market Regional Analysis – Market Trends
NLP Healthcare Life Science Market Regional Overview |
|
Regions |
Countries |
Europe |
Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe |
APAC |
China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific |
North America |
U.S., Canada, and Mexico |
MEA |
Saudi Arabia, U.A.E., South Africa, Egypt, Israel, Rest of Middle East, and Africa |
South America |
Brazil, Argentina, and Rest of South America |
Key Insights
- North America is expected to dominate the market due to increasing demand for NLP solutions and substantial investments in robotics and NLP-related research and development initiatives. The region's advanced healthcare infrastructure and strong presence of key technology giants facilitate the rapid adoption of NLP technologies across various applications, including clinical documentation, patient interaction analysis, and data analytics.
- Asia-Pacific is expected to witness significant growth due to widespread adoption of advanced technologies aimed at optimizing business operations. Increasing investments in healthcare IT infrastructure and rising awareness about the benefits of NLP in improving clinical decision-making processes and patient engagement are key factors driving this growth.
- The Netherlands Organization for Scientific Research (NWO) is involved with projects applying NLP for the analysis of scientific data obtained from biomedical research studies. The goal is to develop new treatments and improve understanding of disease biology.
- The European Union-funded European Health Data Space (EHDS) project is focused on developing NLP tools capable of handling multiple European languages. The initiative aims to create standardized NLP solutions that can process health data across various languages and dialects throughout Europe.
- NHS Digital in the UK is focusing on integrating NLP technologies into EHR systems to enhance clinical documentation and information retrieval. Such integration tries to achieve an enhanced level of data accuracy for patients, which in another sense will allow for the proper conduction of right clinical decisions due to the fact that it automates data extraction and analysis processes from medical recording.
- In South Africa, Data Science Africa develops NLP models that are built to support a number of local languages, from Afrikaans and Zulu to others, to be placed in a position to meet multilingual requirements within a regionally based healthcare system.
Actores líderes del mercado de ciencias biológicas y atención médica con PNL
- 3M (Estados Unidos)
- Corporación Cerner (Estados Unidos)
- Nuance Communications Inc. (Estados Unidos)
- Dolby Systems Inc. (Estados Unidos)
- Microsoft (Estados Unidos)
- IBM (Estados Unidos)
- Google LLC (Alphabet Inc.) (Estados Unidos)
- Amazon Web Services Inc. (Estados Unidos)
- Apixio Inc. (Estados Unidos)
- Averbis (Alemania)
- Clinithink (Estados Unidos)
- Lexalytics (Estados Unidos)
- Ciencia narrativa (Estados Unidos)
- Laboratorios JohnSnow (Estados Unidos)
- BenevolentAI (Reino Unido)
Desarrollos recientes del mercado de ciencias biológicas de la atención médica con PNL
- En febrero de 2024, Persistent Systems colaboró con Microsoft para lanzar una nueva solución PHM impulsada por IA generativa. Desarrollada para respaldar modelos de atención basados en el valor, esta solución avanzada utiliza SDOH para medir las necesidades no clínicas de los pacientes. Como resultado, refuerza la precisión de los análisis predictivos en el gasto sanitario en varias afecciones clínicas.
- En junio de 2023, Apixio, líder en soluciones de inteligencia artificial para la atención médica basada en el valor, completó su fusión con ClaimLogiq, una empresa de tecnología conocida por su experiencia en la mejora de la precisión de las reclamaciones de prepago para los planes de salud. La entidad recién fusionada llevará el nombre de Apixio y se convertirá inmediatamente en uno de los actores más grandes y dominantes en el espacio de datos y análisis de atención médica. La fusión estratégica reúne la inteligencia artificial avanzada de Apixio con la precisión de ClaimLogiq en el procesamiento de reclamaciones, creando una plataforma poderosa para la entrega de información y soluciones integrales. La nueva Apixio busca revolucionar la gestión de la atención médica al mejorar la precisión de los datos, brindar optimización en las predicciones de costos e impulsar estrategias de atención basadas en el valor más efectivas, un nuevo estándar en la industria de análisis de atención médica.
El informe de mercado de DBMR sobre el mercado de procesamiento del lenguaje natural (PLN) en el sector sanitario y de las ciencias biológicas le ofrece información valiosa que puede contribuir a la toma de decisiones empresariales importantes. Con base en nuestros informes y nuestra experiencia en investigación, puede crear estrategias de crecimiento realistas para su empresa.
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.