Image

Mercado global de MLOP: tendencias de la industria y pronóstico hasta 2031

TIC

Image

Mercado global de MLOP: tendencias de la industria y pronóstico hasta 2031

  • TIC
  • Próximo informe
  • abril de 2024
  • Global
  • 350 páginas
  • Número de mesas: 220
  • Número de figuras: 60

Mercado global de MLOP: tendencias de la industria y pronóstico hasta 2031

Tamaño del mercado en miles de millones de dólares

CAGR: % Diagram

Diagram Período de pronóstico 2023-2031
Diagram Tamaño del mercado (año base) 7,62 mil millones de dólares
Diagram Tamaño del mercado (año previsto) 11,69 mil millones de dólares
Diagram CAGR %

Mercado global de MLOP, por componente (plataforma, servicio), modo de implementación (local, nube, híbrido), tamaño de la organización (grandes empresas, pequeñas y medianas empresas (PYME)), verticales de la industria (servicios financieros (BFSI), fabricación , Tecnología de la información (TI) y telecomunicaciones, venta minorista y comercio electrónico, atención médica, otros): tendencias de la industria y pronóstico para 2031.

Análisis y tamaño del mercado de MLOP

Las operaciones de aprendizaje automático (MLOps) se refieren al conjunto de prácticas y herramientas utilizadas para agilizar y automatizar la implementación, el monitoreo y la gestión de modelos de aprendizaje automático en entornos de producción. MLOps tiene como objetivo cerrar la brecha entre el desarrollo y la implementación de modelos de aprendizaje automático garantizando coherencia, confiabilidad y escalabilidad durante todo el ciclo de vida del aprendizaje automático.

Data Bridge Market Research analiza que se espera que el mercado global de MLOP, que fue de 7,62 mil millones de dólares en 2023, alcance los 11,69 mil millones de dólares en 2031 y se espera que experimente una tasa compuesta anual del 5,5% durante el período previsto de 2024 a 2031. Además de Los conocimientos del mercado, como el valor de mercado, la tasa de crecimiento, los segmentos de mercado, la cobertura geográfica, los actores del mercado y el escenario del mercado, el informe de mercado curado por el equipo de investigación de mercado de Data Bridge incluye análisis de expertos en profundidad, análisis de importación/exportación, análisis de precios. análisis de consumo de producción y análisis de mortero.

Alcance del informe y segmentación del mercado

Métrica de informe

Detalles

Período de pronóstico

2024 a 2031

Año base

2023

Años históricos

2022 (Personalizado 2016 a 2021)

Unidades Cuantitativas

Ingresos en miles de millones de dólares, volúmenes en unidades, precios en dólares

Segmentos cubiertos

Componente (plataforma, servicio), modo de implementación (local, nube, híbrido), tamaño de la organización (grandes empresas, pequeñas y medianas empresas (PYME)), sectores verticales (servicios financieros (BFSI), fabricación, tecnología de la información (TI) ) y Telecomunicaciones, Comercio minorista y comercio electrónico, Salud, Otros)

Países cubiertos

EE.UU., Canadá, México, Brasil, Argentina, Resto de Sudamérica, Alemania, Italia, Reino Unido, Francia, España, Países Bajos, Bélgica, Suiza, Turquía, Rusia, Resto de Europa, Japón, China, India, Corea del Sur, Australia, Singapur, Malasia, Tailandia, Indonesia, Filipinas, Resto de Asia-Pacífico, Arabia Saudita, Emiratos Árabes Unidos, Sudáfrica, Egipto, Israel, Resto de Medio Oriente y África

Actores del mercado cubiertos

Databricks (EE. UU.), Domino Data Lab (EE. UU.), Kubeflow (de Google) (EE. UU.), Amazon SageMaker (EE. UU.), Paperspace Gradient (EE. UU.), Fiddler AI (EE. UU.), MLflow (de Databricks) (EE. UU.), Valohai ( Finlandia), Pachyderm (EE.UU.), ZenML (Alemania)

Oportunidades de mercado

  • Creciente demanda de inteligencia artificial y aprendizaje automático
  • Enfoque creciente en la democratización de las MLOps

Definición de mercado

MLOps abarca una gama de soluciones y servicios que agilizan todo el ciclo de vida del aprendizaje automático, desde el desarrollo y la capacitación del modelo hasta la implementación, el monitoreo y la administración. Estas herramientas MLOps cierran la brecha entre la ciencia de datos y la producción, garantizando flujos de trabajo eficientes, rendimiento optimizado del modelo y la integración fluida de modelos de aprendizaje automático en aplicaciones del mundo real en diversas industrias.

Dinámica del mercado de MLOP

Conductores

  • Demanda creciente de una mejor gobernanza y explicabilidad del modelo

La creciente demanda de una mejor gobernanza y explicabilidad del modelo es un impulsor importante que impulsa el mercado global de MLOps (operaciones de aprendizaje automático). A medida que las organizaciones integran cada vez más modelos de aprendizaje automático en sus operaciones, existe un mayor énfasis en garantizar la confiabilidad, transparencia y responsabilidad de estos modelos. La gobernanza mejorada del modelo implica establecer políticas y controles estrictos para gestionar todo el ciclo de vida de los modelos de aprendizaje automático, abordando aspectos como el control de versiones, el cumplimiento y la gestión de riesgos. Además, la necesidad de una mayor explicabilidad está impulsando el desarrollo de herramientas y técnicas para interpretar las decisiones del modelo, proporcionando a las partes interesadas información sobre el comportamiento del modelo y permitiendo una toma de decisiones informada. Este énfasis en la gobernanza y la explicabilidad subraya el papel fundamental que desempeñan las soluciones MLOps para fomentar la confianza, el cumplimiento y la confiabilidad dentro de las implementaciones de aprendizaje automático, impulsando así el crecimiento del mercado.

  • Creciente adopción y escalabilidad de la nube

La creciente adopción de la computación en la nube y la búsqueda de la escalabilidad representan factores fundamentales que impulsan el mercado global de MLOps (operaciones de aprendizaje automático). Dado que las organizaciones aprovechan cada vez más las plataformas en la nube para alojar su infraestructura de aprendizaje automático, surge una necesidad apremiante de soluciones MLOps capaces de integrarse perfectamente con entornos de nube y facilitar la implementación y gestión de modelos escalables. Los servicios MLOps basados ​​en la nube ofrecen una flexibilidad incomparable, lo que permite a las empresas escalar rápidamente sus operaciones de aprendizaje automático en respuesta a la demanda fluctuante y, al mismo tiempo, optimizar la colaboración, el control de versiones y la optimización de recursos. Como resultado, la convergencia de los crecientes requisitos de escalabilidad y adopción de la nube subraya el papel indispensable de las soluciones MLOps en la orquestación de flujos de trabajo de aprendizaje automático eficientes, ágiles y escalables a escala global.

Oportunidades

  • Integración con tecnologías emergentes

La integración con tecnologías emergentes presenta una oportunidad importante para el mercado global de MLOps. A medida que nuevas tecnologías como la inteligencia artificial (IA), la informática de punta, el Internet de las cosas (IoT) y la cadena de bloques continúan evolucionando, surge una necesidad complementaria de soluciones MLOps avanzadas que puedan integrarse perfectamente con estas tecnologías emergentes. Al aprovechar las herramientas y prácticas de MLOps, las organizaciones pueden mejorar la eficiencia, confiabilidad y escalabilidad de sus iniciativas de inteligencia artificial y aprendizaje automático en diversos dominios. La integración con tecnologías emergentes permite que las plataformas MLOps aborden casos de uso complejos, como análisis en tiempo real, mantenimiento predictivo, sistemas autónomos y experiencias de usuario personalizadas, abriendo así nuevas vías para la innovación y la diferenciación competitiva en el mercado.

  • Mayor atención a las pymes y a los desarrolladores individuales

El creciente enfoque en las pequeñas y medianas empresas (PYME) y los desarrolladores individuales presenta una oportunidad importante para el mercado global de MLOps. A medida que la adopción del aprendizaje automático y la IA se expande más allá de las grandes empresas, las pymes y los desarrolladores individuales buscan cada vez más soluciones MLOps accesibles y rentables adaptadas a sus necesidades específicas y limitaciones de recursos. Al atender a este creciente segmento del mercado, MLOps proporciona un amplio grupo de clientes potenciales deseosos de aprovechar las capacidades de aprendizaje automático para mejorar sus productos, servicios y operaciones. Además, empoderar a las pymes y a los desarrolladores individuales con plataformas MLOps fáciles de usar puede democratizar el acceso a análisis y automatización avanzados, fomentando la innovación e impulsando una adopción más amplia de tecnologías de aprendizaje automático en diversas industrias y aplicaciones.

Restricciones/Desafíos

  • Riesgos crecientes para la seguridad de los datos

La escalada de los riesgos de seguridad de los datos plantea un desafío sustancial para el mercado global de MLOP. Con la proliferación de datos confidenciales utilizados en operaciones de aprendizaje automático, incluida información de identificación personal y datos comerciales propietarios, el potencial de violaciones de datos, acceso no autorizado y ataques maliciosos se vuelve cada vez más pronunciado. Garantizar la confidencialidad, integridad y disponibilidad de los datos durante todo el ciclo de vida de MLOps, desde la capacitación hasta la implementación y más allá, requiere medidas de seguridad sólidas y el cumplimiento de estrictos estándares de cumplimiento. Sin embargo, la complejidad de los flujos de trabajo de MLOps, junto con la naturaleza distribuida del procesamiento y almacenamiento de datos, complica los esfuerzos de seguridad y aumenta la vulnerabilidad a las amenazas cibernéticas.

  • Complejidad de las herramientas MLOps

La complejidad asociada con las herramientas MLOps surge como un desafío importante para el mercado global de MLOps. Si bien estas herramientas ofrecen capacidades avanzadas para administrar e implementar modelos de aprendizaje automático, su naturaleza compleja a menudo presenta barreras para su adopción, particularmente para organizaciones que carecen de experiencia o recursos especializados. Las herramientas MLOps complejas pueden requerir una amplia capacitación y competencia técnica para navegar de manera efectiva, lo que genera tiempos de implementación más largos, costos más altos y un mayor riesgo de errores. Además, el rápido ritmo de la innovación en el espacio MLOps agrava aún más este desafío, ya que las organizaciones luchan por mantenerse al día con las tecnologías y las mejores prácticas en evolución.

Este informe de mercado proporciona detalles de nuevos desarrollos recientes, regulaciones comerciales, análisis de importación y exportación, análisis de producción, optimización de la cadena de valor, participación de mercado, el impacto de los actores del mercado nacional y localizado, analiza oportunidades en términos de bolsillos de ingresos emergentes, cambios en las regulaciones del mercado. , análisis estratégico de crecimiento del mercado, tamaño del mercado, crecimientos del mercado de categorías, nichos de aplicación y dominio, aprobaciones de productos, lanzamientos de productos, expansiones geográficas, innovaciones tecnológicas en el mercado. Para obtener más información sobre el mercado, comuníquese con Data Bridge Market Research para obtener un resumen del analista; nuestro equipo lo ayudará a tomar una decisión de mercado informada para lograr el crecimiento del mercado.

Desarrollos recientes

  • En mayo de 2021, Google Cloud lanzó Vertex AI, una plataforma administrada de aprendizaje automático que integra varios servicios para crear, entrenar e implementar modelos de aprendizaje automático, simplificando el ciclo de vida del desarrollo de la IA. Esta iniciativa tenía como objetivo agilizar los procesos de desarrollo e implementación de modelos, permitiendo a las organizaciones acelerar la adopción de la IA y lograr objetivos comerciales de manera eficiente.
  • En septiembre de 2019, DataRobot lanzó su solución MLOps después de adquirir ParallelM, integrando capacidades de monitoreo y gestión de modelos para la implementación, monitoreo y gobernanza centralizados de modelos de aprendizaje automático en todas las empresas, mejorando en última instancia la eficiencia de la implementación de IA. Esta iniciativa tenía como objetivo abordar los desafíos que enfrentan las organizaciones para obtener valor mensurable de los proyectos de IA al proporcionar una solución integral para automatizar y gestionar todo el ciclo de vida del aprendizaje automático.

Alcance del mercado global de MLOP

El mercado está segmentado según el componente, el modo de implementación, el tamaño de la organización y los sectores verticales. El crecimiento entre estos segmentos lo ayudará a analizar los segmentos de escaso crecimiento en las industrias y brindará a los usuarios una valiosa descripción general del mercado e información sobre el mercado para ayudarlos a tomar decisiones estratégicas para identificar las aplicaciones principales del mercado.

Componente

  • Plataforma
  • Servicio

Modo de implementación

  • En la premisa
  • Nube
  • Híbrido

Tamaño de la organización

  • Grandes Empresas
  • Pequeñas y Medianas Empresas (PYMES)

Verticales de la industria

  • Servicios financieros (BFSI)
  • Fabricación
  • Tecnologías de la Información (TI) y Telecomunicaciones
  • Comercio minorista y comercio electrónico
  • Cuidado de la salud
  • Otros

Análisis/perspectivas de la región del mercado de MLOP

Se analiza el mercado y se proporcionan conocimientos y tendencias sobre el tamaño del mercado por región, componente, modo de implementación, tamaño de la organización y sectores verticales de la industria, como se mencionó anteriormente.

Las regiones cubiertas en el mercado son América del Norte, América del Sur, Europa, Asia-Pacífico, Oriente Medio y África. Los países cubiertos en el informe del mercado global de MLOP son EE. UU., Canadá, México, Brasil, Argentina, el resto de América del Sur, Alemania, Italia, Reino Unido, Francia, España, Países Bajos, Bélgica, Suiza, Turquía, Rusia, resto de Europa. Japón, China, India, Corea del Sur, Australia, Singapur, Malasia, Tailandia, Indonesia, Filipinas, Resto de Asia-Pacífico, Arabia Saudita, Emiratos Árabes Unidos, Sudáfrica, Egipto, Israel, Resto de Medio Oriente y África.

América del Norte domina el mercado global de MLOps por varias razones. La región cuenta con un sólido ecosistema de empresas de tecnología, instituciones de investigación y profesionales capacitados que se especializan en aprendizaje automático y ciencia de datos, lo que fomenta la innovación e impulsa el liderazgo en el mercado. Además, América del Norte alberga muchos proveedores líderes de servicios en la nube, que ofrecen infraestructura escalable y soluciones MLOps avanzadas que satisfacen diversas necesidades comerciales. Además, el sólido entorno regulatorio de la región, junto con un mercado empresarial maduro, fomenta la adopción generalizada de prácticas MLOps para garantizar el cumplimiento, la gobernanza y la gestión de riesgos. Además, la cultura empresarial y el ecosistema de capital de riesgo de América del Norte facilitan el rápido crecimiento de nuevas empresas y actores emergentes en el espacio MLOps, lo que contribuye al dominio de la región en el mercado global. En general, la convergencia de experiencia tecnológica, infraestructura de apoyo, marcos regulatorios y dinamismo empresarial posiciona a América del Norte como líder en impulsar el avance y la adopción de MLOps en todo el mundo.

La región de Asia y el Pacífico emerge como la región de más rápido crecimiento en el mercado global de MLOP debido a varios factores clave. La región está siendo testigo de una rápida transformación digital en varias industrias, impulsando la adopción de tecnologías de aprendizaje automático e inteligencia artificial para mejorar la eficiencia y la competitividad empresarial. A medida que las organizaciones de Asia y el Pacífico reconocen cada vez más la importancia estratégica de los conocimientos basados ​​en datos, existe una demanda creciente de soluciones MLOps para agilizar el desarrollo, la implementación y la gestión de modelos de aprendizaje automático.

La sección de región del informe también proporciona factores individuales que impactan el mercado y cambios en la regulación en el mercado a nivel nacional que impactan las tendencias actuales y futuras del mercado. Puntos de datos como el análisis de la cadena de valor ascendente y descendente, las tendencias técnicas y el análisis de las cinco fuerzas de Porter y los estudios de casos son algunos de los indicadores utilizados para pronosticar el escenario del mercado para países individuales. Además, se consideran la presencia y disponibilidad de marcas globales y los desafíos que enfrentan debido a la competencia grande o escasa de marcas locales y nacionales, el impacto de los aranceles internos y las rutas comerciales, al tiempo que se proporciona un análisis de pronóstico de los datos de la región.

Panorama competitivo y cuota de mercado Análisis MLOP

El panorama competitivo del mercado proporciona detalles de los competidores. Los detalles incluidos son descripción general de la empresa, finanzas de la empresa, ingresos generados, potencial de mercado, inversión en investigación y desarrollo, nuevas iniciativas de mercado, presencia global, sitios e instalaciones de producción, capacidades de producción, fortalezas y debilidades de la empresa, lanzamiento de productos, ancho y amplitud del producto, y dominio de la aplicación. Los puntos de datos anteriores proporcionados sólo están relacionados con el enfoque de las empresas en el mercado.

Algunos de los principales actores que operan en el mercado son:

  • Ladrillos de datos (EE. UU.)
  • Laboratorio de datos de Domino (EE. UU.)
  • Kubeflow (por Google) (EE. UU.)
  • Amazon SageMaker (EE. UU.)
  • Degradado de espacio de papel (EE. UU.)
  • Fiddler AI (EE. UU.)
  • MLflow (de Databricks) (EE. UU.)
  • Tiburón claro (Finlandia)
  • Paquidermo (EE. UU.)
  • ZenML (Alemania)


SKU-

Complete el siguiente formulario para obtener una tabla de contenido detallada

Al hacer clic en el botón "Enviar", usted acepta la investigación de mercado de Data Bridge. política de privacidad y Términos y condiciones

Complete el siguiente formulario para obtener una lista detallada de tablas

Al hacer clic en el botón "Enviar", usted acepta la investigación de mercado de Data Bridge. política de privacidad y Términos y condiciones

Complete el siguiente formulario para obtener una lista detallada de figuras.

Al hacer clic en el botón "Enviar", usted acepta la investigación de mercado de Data Bridge. política de privacidad y Términos y condiciones

Por favor complete el siguiente formulario para Infografías

Al hacer clic en el botón "Enviar", usted acepta la investigación de mercado de Data Bridge. política de privacidad y Términos y condiciones

Metodología de investigación:

La recopilación de datos y el análisis del año base se realizan mediante módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de diversas fuentes y estrategias. Incluye examinar y planificar de antemano todos los datos adquiridos del pasado. Asimismo, abarca el examen de las inconsistencias de la información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la cuota de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para saber más, solicite una llamada de analista o envíe su consulta.

La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica extracción de datos, análisis del impacto de las variables de datos en el mercado y validación primaria (experto de la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de la línea de tiempo del mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para saber más sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.

Por favor complete el siguiente formulario para Metodología de Investigación

Al hacer clic en el botón "Enviar", usted acepta la investigación de mercado de Data Bridge. política de privacidad y Términos y condiciones

Personalización disponible:

Data Bridge Market Research es líder en investigación formativa avanzada. Estamos orgullosos de brindar servicios a nuestros clientes nuevos y existentes con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo que comprendan el mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de la literatura, mercado renovado y análisis de la base de productos. El análisis de mercado de los competidores objetivo se puede analizar desde análisis basados ​​en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en tablas dinámicas de archivos de Excel sin procesar (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.

Complete el siguiente formulario para personalizar disponible

Al hacer clic en el botón "Enviar", usted acepta la investigación de mercado de Data Bridge. política de privacidad y Términos y condiciones

HAGA PREGUNTAS FRECUENTES

El tamaño del mercado de MLOP tendrá un valor de 11,69 mil millones de dólares para 2031.
La tasa de crecimiento del mercado de MLOP es del 5,5%.
La creciente demanda de una mejor gobernanza y explicabilidad del modelo y la creciente adopción y escalabilidad de la nube son los motores de crecimiento del mercado de MLOP.
El componente, el modo de implementación, el tamaño de la organización y las verticales de la industria son los factores en los que se basa la investigación de mercado de MLOP.
Las principales empresas en el mercado de MLOP son Databricks (EE. UU.), Domino Data Lab (EE. UU.), Kubeflow (de Google) (EE. UU.), Amazon SageMaker (EE. UU.), Paperspace Gradient (EE. UU.), Fiddler AI (EE. UU.), MLflow (de Databricks ) (EE.UU.), Valohai (Finlandia), Pachyderm (EE.UU.), ZenML (Alemania).
Informe de muestra gratuito

ELEGIR TIPO DE LICENCIA

  • 7000.00
  • 4800.00
  • 3000.00
  • 8000.00
  • 12000.00

Por qué elegirnos

Cobertura de la industria

DBMR trabaja en todo el mundo en múltiples industrias, lo que nos brinda conocimiento en todos los sectores verticales y brinda a nuestros clientes información no solo de su industria sino también de cómo otras industrias afectarán su ecosistema.

Cobertura Regional

La cobertura de Data Bridge no se limita a las economías desarrolladas o emergentes. Trabajamos en todo el mundo cubriendo la mayor variedad de países donde ninguna otra firma de investigación de mercado o consultoría de negocios ha realizado investigaciones; creando oportunidades de crecimiento para nuestros clientes en áreas aún desconocidas.

Cobertura Tecnológica

En el mundo actual, la tecnología impulsa el sentimiento del mercado, por lo que nuestra visión es brindar a nuestros clientes información no solo sobre las tecnologías desarrolladas, sino también sobre los cambios tecnológicos futuros e disruptivos a lo largo del ciclo de vida del producto, brindándoles oportunidades imprevistas en el mercado que crearán disrupciones en su industria. . Esto lleva a la innovación y a que nuestros clientes salgan ganadores.

Soluciones orientadas a objetivos

El objetivo de DBMR es ayudar a nuestros clientes a alcanzar sus objetivos a través de nuestras soluciones; por lo tanto, creamos de manera formativa las soluciones más adecuadas para las necesidades de nuestros clientes, ahorrándoles tiempo y esfuerzos para impulsar sus grandes estrategias.

Soporte de analista incomparable

Nuestros analistas se enorgullecen del éxito de nuestros clientes. A diferencia de otros, creemos en trabajar junto a nuestros clientes para lograr sus objetivos con soporte de analistas las 24 horas para determinar las necesidades correctas e inspirar la innovación a través del servicio.

Banner

testimonios de clientes