Mercado global de MLOP, por componente (plataforma, servicio), modo de implementación (local, nube, híbrido), tamaño de la organización (grandes empresas, pequeñas y medianas empresas (PYME)), verticales de la industria (servicios financieros (BFSI), fabricación , Tecnología de la información (TI) y telecomunicaciones, venta minorista y comercio electrónico, atención médica, otros): tendencias de la industria y pronóstico para 2031.
Análisis y tamaño del mercado de MLOP
Las operaciones de aprendizaje automático (MLOps) se refieren al conjunto de prácticas y herramientas utilizadas para agilizar y automatizar la implementación, el monitoreo y la gestión de modelos de aprendizaje automático en entornos de producción. MLOps tiene como objetivo cerrar la brecha entre el desarrollo y la implementación de modelos de aprendizaje automático garantizando coherencia, confiabilidad y escalabilidad durante todo el ciclo de vida del aprendizaje automático.
Data Bridge Market Research analiza que se espera que el mercado global de MLOP, que fue de 7,62 mil millones de dólares en 2023, alcance los 11,69 mil millones de dólares en 2031 y se espera que experimente una tasa compuesta anual del 5,5% durante el período previsto de 2024 a 2031. Además de Los conocimientos del mercado, como el valor de mercado, la tasa de crecimiento, los segmentos de mercado, la cobertura geográfica, los actores del mercado y el escenario del mercado, el informe de mercado curado por el equipo de investigación de mercado de Data Bridge incluye análisis de expertos en profundidad, análisis de importación/exportación, análisis de precios. análisis de consumo de producción y análisis de mortero.
Alcance del informe y segmentación del mercado
Métrica de informe |
Detalles |
Período de pronóstico |
2024 a 2031 |
Año base |
2023 |
Años históricos |
2022 (Personalizado 2016 a 2021) |
Unidades Cuantitativas |
Ingresos en miles de millones de dólares, volúmenes en unidades, precios en dólares |
Segmentos cubiertos |
Componente (plataforma, servicio), modo de implementación (local, nube, híbrido), tamaño de la organización (grandes empresas, pequeñas y medianas empresas (PYME)), sectores verticales (servicios financieros (BFSI), fabricación, tecnología de la información (TI) ) y Telecomunicaciones, Comercio minorista y comercio electrónico, Salud, Otros) |
Países cubiertos |
EE.UU., Canadá, México, Brasil, Argentina, Resto de Sudamérica, Alemania, Italia, Reino Unido, Francia, España, Países Bajos, Bélgica, Suiza, Turquía, Rusia, Resto de Europa, Japón, China, India, Corea del Sur, Australia, Singapur, Malasia, Tailandia, Indonesia, Filipinas, Resto de Asia-Pacífico, Arabia Saudita, Emiratos Árabes Unidos, Sudáfrica, Egipto, Israel, Resto de Medio Oriente y África |
Actores del mercado cubiertos |
Databricks (EE. UU.), Domino Data Lab (EE. UU.), Kubeflow (de Google) (EE. UU.), Amazon SageMaker (EE. UU.), Paperspace Gradient (EE. UU.), Fiddler AI (EE. UU.), MLflow (de Databricks) (EE. UU.), Valohai ( Finlandia), Pachyderm (EE.UU.), ZenML (Alemania) |
Oportunidades de mercado |
|
Definición de mercado
MLOps abarca una gama de soluciones y servicios que agilizan todo el ciclo de vida del aprendizaje automático, desde el desarrollo y la capacitación del modelo hasta la implementación, el monitoreo y la administración. Estas herramientas MLOps cierran la brecha entre la ciencia de datos y la producción, garantizando flujos de trabajo eficientes, rendimiento optimizado del modelo y la integración fluida de modelos de aprendizaje automático en aplicaciones del mundo real en diversas industrias.
Dinámica del mercado de MLOP
Conductores
- Demanda creciente de una mejor gobernanza y explicabilidad del modelo
La creciente demanda de una mejor gobernanza y explicabilidad del modelo es un impulsor importante que impulsa el mercado global de MLOps (operaciones de aprendizaje automático). A medida que las organizaciones integran cada vez más modelos de aprendizaje automático en sus operaciones, existe un mayor énfasis en garantizar la confiabilidad, transparencia y responsabilidad de estos modelos. La gobernanza mejorada del modelo implica establecer políticas y controles estrictos para gestionar todo el ciclo de vida de los modelos de aprendizaje automático, abordando aspectos como el control de versiones, el cumplimiento y la gestión de riesgos. Además, la necesidad de una mayor explicabilidad está impulsando el desarrollo de herramientas y técnicas para interpretar las decisiones del modelo, proporcionando a las partes interesadas información sobre el comportamiento del modelo y permitiendo una toma de decisiones informada. Este énfasis en la gobernanza y la explicabilidad subraya el papel fundamental que desempeñan las soluciones MLOps para fomentar la confianza, el cumplimiento y la confiabilidad dentro de las implementaciones de aprendizaje automático, impulsando así el crecimiento del mercado.
- Creciente adopción y escalabilidad de la nube
La creciente adopción de la computación en la nube y la búsqueda de la escalabilidad representan factores fundamentales que impulsan el mercado global de MLOps (operaciones de aprendizaje automático). Dado que las organizaciones aprovechan cada vez más las plataformas en la nube para alojar su infraestructura de aprendizaje automático, surge una necesidad apremiante de soluciones MLOps capaces de integrarse perfectamente con entornos de nube y facilitar la implementación y gestión de modelos escalables. Los servicios MLOps basados en la nube ofrecen una flexibilidad incomparable, lo que permite a las empresas escalar rápidamente sus operaciones de aprendizaje automático en respuesta a la demanda fluctuante y, al mismo tiempo, optimizar la colaboración, el control de versiones y la optimización de recursos. Como resultado, la convergencia de los crecientes requisitos de escalabilidad y adopción de la nube subraya el papel indispensable de las soluciones MLOps en la orquestación de flujos de trabajo de aprendizaje automático eficientes, ágiles y escalables a escala global.
Oportunidades
- Integración con tecnologías emergentes
La integración con tecnologías emergentes presenta una oportunidad importante para el mercado global de MLOps. A medida que nuevas tecnologías como la inteligencia artificial (IA), la informática de punta, el Internet de las cosas (IoT) y la cadena de bloques continúan evolucionando, surge una necesidad complementaria de soluciones MLOps avanzadas que puedan integrarse perfectamente con estas tecnologías emergentes. Al aprovechar las herramientas y prácticas de MLOps, las organizaciones pueden mejorar la eficiencia, confiabilidad y escalabilidad de sus iniciativas de inteligencia artificial y aprendizaje automático en diversos dominios. La integración con tecnologías emergentes permite que las plataformas MLOps aborden casos de uso complejos, como análisis en tiempo real, mantenimiento predictivo, sistemas autónomos y experiencias de usuario personalizadas, abriendo así nuevas vías para la innovación y la diferenciación competitiva en el mercado.
- Mayor atención a las pymes y a los desarrolladores individuales
El creciente enfoque en las pequeñas y medianas empresas (PYME) y los desarrolladores individuales presenta una oportunidad importante para el mercado global de MLOps. A medida que la adopción del aprendizaje automático y la IA se expande más allá de las grandes empresas, las pymes y los desarrolladores individuales buscan cada vez más soluciones MLOps accesibles y rentables adaptadas a sus necesidades específicas y limitaciones de recursos. Al atender a este creciente segmento del mercado, MLOps proporciona un amplio grupo de clientes potenciales deseosos de aprovechar las capacidades de aprendizaje automático para mejorar sus productos, servicios y operaciones. Además, empoderar a las pymes y a los desarrolladores individuales con plataformas MLOps fáciles de usar puede democratizar el acceso a análisis y automatización avanzados, fomentando la innovación e impulsando una adopción más amplia de tecnologías de aprendizaje automático en diversas industrias y aplicaciones.
Restricciones/Desafíos
- Riesgos crecientes para la seguridad de los datos
La escalada de los riesgos de seguridad de los datos plantea un desafío sustancial para el mercado global de MLOP. Con la proliferación de datos confidenciales utilizados en operaciones de aprendizaje automático, incluida información de identificación personal y datos comerciales propietarios, el potencial de violaciones de datos, acceso no autorizado y ataques maliciosos se vuelve cada vez más pronunciado. Garantizar la confidencialidad, integridad y disponibilidad de los datos durante todo el ciclo de vida de MLOps, desde la capacitación hasta la implementación y más allá, requiere medidas de seguridad sólidas y el cumplimiento de estrictos estándares de cumplimiento. Sin embargo, la complejidad de los flujos de trabajo de MLOps, junto con la naturaleza distribuida del procesamiento y almacenamiento de datos, complica los esfuerzos de seguridad y aumenta la vulnerabilidad a las amenazas cibernéticas.
- Complejidad de las herramientas MLOps
La complejidad asociada con las herramientas MLOps surge como un desafío importante para el mercado global de MLOps. Si bien estas herramientas ofrecen capacidades avanzadas para administrar e implementar modelos de aprendizaje automático, su naturaleza compleja a menudo presenta barreras para su adopción, particularmente para organizaciones que carecen de experiencia o recursos especializados. Las herramientas MLOps complejas pueden requerir una amplia capacitación y competencia técnica para navegar de manera efectiva, lo que genera tiempos de implementación más largos, costos más altos y un mayor riesgo de errores. Además, el rápido ritmo de la innovación en el espacio MLOps agrava aún más este desafío, ya que las organizaciones luchan por mantenerse al día con las tecnologías y las mejores prácticas en evolución.
Este informe de mercado proporciona detalles de nuevos desarrollos recientes, regulaciones comerciales, análisis de importación y exportación, análisis de producción, optimización de la cadena de valor, participación de mercado, el impacto de los actores del mercado nacional y localizado, analiza oportunidades en términos de bolsillos de ingresos emergentes, cambios en las regulaciones del mercado. , análisis estratégico de crecimiento del mercado, tamaño del mercado, crecimientos del mercado de categorías, nichos de aplicación y dominio, aprobaciones de productos, lanzamientos de productos, expansiones geográficas, innovaciones tecnológicas en el mercado. Para obtener más información sobre el mercado, comuníquese con Data Bridge Market Research para obtener un resumen del analista; nuestro equipo lo ayudará a tomar una decisión de mercado informada para lograr el crecimiento del mercado.
Desarrollos recientes
- En mayo de 2021, Google Cloud lanzó Vertex AI, una plataforma administrada de aprendizaje automático que integra varios servicios para crear, entrenar e implementar modelos de aprendizaje automático, simplificando el ciclo de vida del desarrollo de la IA. Esta iniciativa tenía como objetivo agilizar los procesos de desarrollo e implementación de modelos, permitiendo a las organizaciones acelerar la adopción de la IA y lograr objetivos comerciales de manera eficiente.
- En septiembre de 2019, DataRobot lanzó su solución MLOps después de adquirir ParallelM, integrando capacidades de monitoreo y gestión de modelos para la implementación, monitoreo y gobernanza centralizados de modelos de aprendizaje automático en todas las empresas, mejorando en última instancia la eficiencia de la implementación de IA. Esta iniciativa tenía como objetivo abordar los desafíos que enfrentan las organizaciones para obtener valor mensurable de los proyectos de IA al proporcionar una solución integral para automatizar y gestionar todo el ciclo de vida del aprendizaje automático.
Alcance del mercado global de MLOP
El mercado está segmentado según el componente, el modo de implementación, el tamaño de la organización y los sectores verticales. El crecimiento entre estos segmentos lo ayudará a analizar los segmentos de escaso crecimiento en las industrias y brindará a los usuarios una valiosa descripción general del mercado e información sobre el mercado para ayudarlos a tomar decisiones estratégicas para identificar las aplicaciones principales del mercado.
Componente
- Plataforma
- Servicio
Modo de implementación
- En la premisa
- Nube
- Híbrido
Tamaño de la organización
- Grandes Empresas
- Pequeñas y Medianas Empresas (PYMES)
Verticales de la industria
- Servicios financieros (BFSI)
- Fabricación
- Tecnologías de la Información (TI) y Telecomunicaciones
- Comercio minorista y comercio electrónico
- Cuidado de la salud
- Otros
Análisis/perspectivas de la región del mercado de MLOP
Se analiza el mercado y se proporcionan conocimientos y tendencias sobre el tamaño del mercado por región, componente, modo de implementación, tamaño de la organización y sectores verticales de la industria, como se mencionó anteriormente.
Las regiones cubiertas en el mercado son América del Norte, América del Sur, Europa, Asia-Pacífico, Oriente Medio y África. Los países cubiertos en el informe del mercado global de MLOP son EE. UU., Canadá, México, Brasil, Argentina, el resto de América del Sur, Alemania, Italia, Reino Unido, Francia, España, Países Bajos, Bélgica, Suiza, Turquía, Rusia, resto de Europa. Japón, China, India, Corea del Sur, Australia, Singapur, Malasia, Tailandia, Indonesia, Filipinas, Resto de Asia-Pacífico, Arabia Saudita, Emiratos Árabes Unidos, Sudáfrica, Egipto, Israel, Resto de Medio Oriente y África.
América del Norte domina el mercado global de MLOps por varias razones. La región cuenta con un sólido ecosistema de empresas de tecnología, instituciones de investigación y profesionales capacitados que se especializan en aprendizaje automático y ciencia de datos, lo que fomenta la innovación e impulsa el liderazgo en el mercado. Además, América del Norte alberga muchos proveedores líderes de servicios en la nube, que ofrecen infraestructura escalable y soluciones MLOps avanzadas que satisfacen diversas necesidades comerciales. Además, el sólido entorno regulatorio de la región, junto con un mercado empresarial maduro, fomenta la adopción generalizada de prácticas MLOps para garantizar el cumplimiento, la gobernanza y la gestión de riesgos. Además, la cultura empresarial y el ecosistema de capital de riesgo de América del Norte facilitan el rápido crecimiento de nuevas empresas y actores emergentes en el espacio MLOps, lo que contribuye al dominio de la región en el mercado global. En general, la convergencia de experiencia tecnológica, infraestructura de apoyo, marcos regulatorios y dinamismo empresarial posiciona a América del Norte como líder en impulsar el avance y la adopción de MLOps en todo el mundo.
La región de Asia y el Pacífico emerge como la región de más rápido crecimiento en el mercado global de MLOP debido a varios factores clave. La región está siendo testigo de una rápida transformación digital en varias industrias, impulsando la adopción de tecnologías de aprendizaje automático e inteligencia artificial para mejorar la eficiencia y la competitividad empresarial. A medida que las organizaciones de Asia y el Pacífico reconocen cada vez más la importancia estratégica de los conocimientos basados en datos, existe una demanda creciente de soluciones MLOps para agilizar el desarrollo, la implementación y la gestión de modelos de aprendizaje automático.
La sección de región del informe también proporciona factores individuales que impactan el mercado y cambios en la regulación en el mercado a nivel nacional que impactan las tendencias actuales y futuras del mercado. Puntos de datos como el análisis de la cadena de valor ascendente y descendente, las tendencias técnicas y el análisis de las cinco fuerzas de Porter y los estudios de casos son algunos de los indicadores utilizados para pronosticar el escenario del mercado para países individuales. Además, se consideran la presencia y disponibilidad de marcas globales y los desafíos que enfrentan debido a la competencia grande o escasa de marcas locales y nacionales, el impacto de los aranceles internos y las rutas comerciales, al tiempo que se proporciona un análisis de pronóstico de los datos de la región.
Panorama competitivo y cuota de mercado Análisis MLOP
El panorama competitivo del mercado proporciona detalles de los competidores. Los detalles incluidos son descripción general de la empresa, finanzas de la empresa, ingresos generados, potencial de mercado, inversión en investigación y desarrollo, nuevas iniciativas de mercado, presencia global, sitios e instalaciones de producción, capacidades de producción, fortalezas y debilidades de la empresa, lanzamiento de productos, ancho y amplitud del producto, y dominio de la aplicación. Los puntos de datos anteriores proporcionados sólo están relacionados con el enfoque de las empresas en el mercado.
Algunos de los principales actores que operan en el mercado son:
- Ladrillos de datos (EE. UU.)
- Laboratorio de datos de Domino (EE. UU.)
- Kubeflow (por Google) (EE. UU.)
- Amazon SageMaker (EE. UU.)
- Degradado de espacio de papel (EE. UU.)
- Fiddler AI (EE. UU.)
- MLflow (de Databricks) (EE. UU.)
- Tiburón claro (Finlandia)
- Paquidermo (EE. UU.)
- ZenML (Alemania)
SKU-