Global Data Science Platform Market
Tamaño del mercado en miles de millones de dólares
Tasa de crecimiento anual compuesta (CAGR) : %
Período de pronóstico |
2024 –2031 |
Tamaño del mercado (año base) |
USD 158.59 Billion |
Tamaño del mercado (año de pronóstico) |
USD 1,216.19 Billion |
Tasa de crecimiento anual compuesta (CAGR) |
|
Jugadoras de los principales mercados |
|
>Segmentación del mercado global de plataformas de ciencia de datos, por tipo de componente (plataforma, servicios, soporte y mantenimiento, consultoría, implementación e integración), división de funciones (marketing, ventas, logística, finanzas y contabilidad, atención al cliente, operaciones comerciales y otros), modelo de implementación (local y en la nube), tamaño de la organización (pequeñas y medianas empresas [PYME], grandes empresas), aplicación de usuario final (banca, servicios financieros y seguros [BFSI], telecomunicaciones y TI, comercio minorista y electrónico, atención médica y ciencias biológicas, fabricación, energía y servicios públicos, medios y entretenimiento, transporte y logística, gobierno y otros): tendencias de la industria y pronóstico hasta 2031
Análisis del mercado de plataformas de ciencia de datos
El mercado de plataformas de ciencia de datos está experimentando un rápido crecimiento debido a la integración de tecnologías avanzadas como la inteligencia artificial (IA), el aprendizaje automático (ML) y la computación en la nube . Uno de los últimos métodos que impulsan el mercado es el uso de herramientas AutoML (aprendizaje automático automatizado), que simplifican el proceso de creación de modelos, lo que permite a las empresas con menos experiencia aprovechar la IA de manera eficaz. Estas plataformas permiten a los científicos de datos centrarse en la innovación, mientras que la automatización se encarga de las tareas repetitivas.
Las plataformas de ciencia de datos basadas en la nube, como Google Cloud AI y AWS SageMaker, promueven aún más la escalabilidad y la rentabilidad. Al utilizar la nube, las empresas pueden acceder a una inmensa potencia computacional a pedido, lo que garantiza el procesamiento rápido de grandes conjuntos de datos.
Otro avance es la adopción de herramientas colaborativas que permiten a los equipos trabajar simultáneamente en proyectos, lo que aumenta la eficiencia y reduce el tiempo de comercialización de las soluciones de IA. Estas plataformas suelen integrarse con los ecosistemas de datos existentes, lo que las hace accesibles a una amplia gama de industrias, como la atención médica, las finanzas y el comercio minorista. A medida que las organizaciones se dan cuenta del valor de los conocimientos basados en datos, se espera que la demanda de plataformas integrales de ciencia de datos aumente significativamente, lo que impulsará el crecimiento del mercado.
Tamaño del mercado de plataformas de ciencia de datos
El tamaño del mercado global de plataformas de ciencia de datos se valoró en USD 158,59 mil millones en 2023 y se proyecta que alcance los USD 1,216,19 mil millones para 2031, con una CAGR del 29,00% durante el período de pronóstico de 2024 a 2031. Además de los conocimientos del mercado, como el valor de mercado, la tasa de crecimiento, los segmentos del mercado, la cobertura geográfica, los actores del mercado y el escenario del mercado, el informe de mercado curado por el equipo de investigación de mercado de Data Bridge incluye un análisis experto en profundidad, análisis de importación / exportación, análisis de precios, análisis de consumo de producción y análisis pestle.
Tendencias del mercado de plataformas de ciencia de datos
“El auge del aprendizaje automático automatizado (AutoML)”
One significant trend driving the growth of the data science platform market is the rise of Automated Machine Learning (AutoML). This technology simplifies and accelerates the model development process, allowing users with limited data science expertise to build predictive models. For instance, in January 2023, Science Applications International Corp. introduced the "Tenjin" data science platform, a versatile solution that supports low-code to full-code development for AI and machine learning applications. Powered by Dataiku, Tenjin facilitates the entire lifecycle of AI and ML model development, from deployment to training and automation, along with advanced data visualization tools. This platform aims to simplify complex processes, making AI accessible to a wider range of businesses.
Report Scope and Data Science Platform Market Segmentation
Attributes |
Data Science Platform Key Market Insights |
Segments Covered |
|
Countries Covered |
U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America |
Key Market Players |
IBM (U.S.), DataRobot Inc., (U.S.), apheris AI GmbH (Germany), The Digital Talent Ecosystem (U.S.), Databand (Israel), dotData (U.S.), Explorium Inc., (U.S.), Noogata (Israel), Tecton Inc., (U.S.), Spell Designs Pty Ltd (U.S.), Arrikto Inc., (U.S.), Iterative (U.S.), Google Inc (U.S.), Microsoft (U.S.), SAS Institute Inc., (U.S.), Amazon Web Services, Inc. (U.S.), The MathWorks, Inc. (U.S.), Cloudera Inc.,(U.S.), Teradata (U.S.), TIBCO Software Inc. (U.S.), ALTERYX, INC. (U.S.), RapidMiner (U.S.), Databricks (U.S.), Snowflake Inc., (U.S.), H2O.ai (U.S.), Altair Inc., (U.S.), Anaconda Inc., (U.S.), SAP SE (U.S.), Domino Data Lab Inc., (U.S.) and Dataiku (U.S.) |
Market Opportunities |
|
Value Added Data Infosets |
In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis. |
Data Science Platform Market Definition
A data science platform is an integrated environment that provides tools, libraries, and infrastructure for data scientists to develop, manage, and execute data-driven projects. It enables users to collect, analyze, and visualize large datasets while facilitating collaboration between teams. These platforms often support various programming languages (such as Python, R, and SQL), machine learning algorithms, and data pipelines for efficient model building and deployment. Data science platforms also offer capabilities such as version control, automation, and scalability, making it easier for organizations to leverage insights from data in a structured and repeatable way for decision-making.
Data Science Platform Market Dynamics
Drivers
- Demand for Data-Driven Decision Making
The increasing reliance on data-driven decision-making is a major driver of the data science platform market. Organizations across industries are shifting towards using data insights to enhance strategy, improve customer engagement, and streamline operations. Data science platforms enable businesses to efficiently process and analyze vast datasets, leading to more accurate and informed decisions. For instance, in October 2023, GoodData Corporation unveiled its latest AI-driven data analytics platform, designed to enhance machine learning (ML), AI, and business intelligence (BI) workflows. This platform incorporates various generative AI capabilities, including a virtual assistant that provides summaries and insights. By streamlining data discovery and development processes, it enables users to make informed decisions faster, ultimately improving efficiency and effectiveness in data-driven environments.
- Growth of Big Data
The exponential rise in data generated from various sources such as IoT devices, social media platforms, and e-commerce activities is a key driver of the data science platform market. These vast volumes of unstructured and structured data require robust platforms for efficient storage, processing, and analysis. For instance, in January 2024, Databricks launched a new business intelligence platform specifically designed for telecom carriers and network service providers (NSPs). This innovative platform empowers these companies by providing a comprehensive view of their networks, operations, and customer interactions. Importantly, it ensures data privacy and protects confidential intellectual property, enabling telecom firms to make informed decisions while maintaining high standards of security in their operations.
Opportunities
- Open-Source Innovation
Open-source innovation significantly enhances the data science platform market by providing accessible tools that foster collaboration and rapid development. Platforms such as Apache Spark and TensorFlow exemplify this trend, allowing data scientists to leverage robust libraries without hefty licensing fees. As organizations seek cost-effective solutions for machine learning and big data processing, they increasingly adopt these open-source frameworks, leading to a surge in community contributions and enhancements. This collaborative environment not only accelerates the development of new features but also attracts a larger talent pool, creating opportunities for businesses to innovate and maintain competitive advantages in a data-driven landscape.
- Advances in Predictive Analytics
The surge in predictive analytics across healthcare, finance, and retail sectors presents significant opportunities in the data science platform market. In healthcare, predictive models are used to forecast patient outcomes and optimize treatment plans, as seen with tools such as IBM Watson Health. In finance, companies leverage predictive analytics for credit scoring and fraud detection, exemplified by FICO's advanced scoring algorithms. For instance, in October 2022, IBM Corporation launched the Diamondback tape library, an advanced storage solution utilizing LTO technology. This innovative product boasts an impressive capacity of up to 27 petabytes (PB) of data storage within a single server rack. The Diamondback is designed to meet the increasing demands for data storage, offering scalability and reliability for organizations needing to manage vast amounts of information securely and efficiently. As organizations recognize the value of predictive insights for decision-making, the demand for sophisticated data science platforms capable of handling complex modeling and forecasting continues to grow, creating lucrative market prospects.
Restraints/Challenges
- Data Privacy and Security Concerns
Data privacy and security concerns significantly hinder the data science platform market. As organizations rely more on data analytics, they face mounting pressure to comply with stringent regulations such as GDPR and CCPA. Non-compliance can result in hefty fines and reputational damage, leading organizations to be cautious in their data handling practices. This trepidation restricts the adoption of advanced data science solutions, as companies may prioritize security over innovation. In addition, the need for robust security measures can increase implementation costs and complexity, further deterring organizations from investing in new data science platforms and slowing overall market growth.
- Lack of Skilled Professionals
A lack of skilled professionals significantly hinders the data science platform market. The rapid evolution of data science technologies has resulted in a substantial talent gap, with many organizations struggling to find qualified data scientists and analysts. This shortage impedes the effective utilization of advanced data science platforms, leading to underperformance in analytics initiatives. Companies often invest in sophisticated tools but cannot maximize their potential due to insufficient expertise in interpreting data and deriving actionable insights. Consequently, this talent deficit stifles innovation, slows project timelines, and ultimately limits market growth as businesses fail to leverage data science capabilities to their fullest extent.
This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
Data Science Platform Market Scope
The market is segmented on the basis of component type, function division, deployment model, organization size and end user application. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Component Type
- Platform
- Services
Professional Services
- Support and Maintenance
- Consulting
- Deployment and Integration
Managed Services
Function Division
- Marketing
- Sales
- Logistics
- Finance and Accounting
- Customer Support
- Business Operations
- Others
Deployment Model
- On-Premises
- Cloud based
Organization Size
- Small and Medium-sized Enterprises (SMEs)
- Large Enterprises
End User Application
- Banking, Financial Services, and Insurance (BFSI)
- Telecom and IT
- Retail and E-commerce
- Healthcare and Life sciences
- Manufacturing
- Energy and Utilities
- Media and Entertainment
- Transportation and Logistics
- Government
- Others
Data Science Platform Market Regional Analysis
The market is analyzed and market size insights and trends are provided by component type, function division, deployment model, organization size and end user application as referenced above.
Los países cubiertos en el informe de mercado son EE. UU., Canadá, México en América del Norte, Alemania, Suecia, Polonia, Dinamarca, Italia, Reino Unido, Francia, España, Países Bajos, Bélgica, Suiza, Turquía, Rusia, Resto de Europa en Europa, Japón, China, India, Corea del Sur, Nueva Zelanda, Vietnam, Australia, Singapur, Malasia, Tailandia, Indonesia, Filipinas, Resto de Asia-Pacífico (APAC) en Asia-Pacífico (APAC), Brasil, Argentina, Resto de Sudamérica como parte de Sudamérica, Emiratos Árabes Unidos, Arabia Saudita, Omán, Qatar, Kuwait, Sudáfrica, Resto de Medio Oriente y África (MEA) como parte de Medio Oriente y África (MEA).
Se espera que América del Norte domine el mercado de plataformas de ciencia de datos debido a la presencia de una infraestructura bien establecida y a los bajos costos laborales en los países en desarrollo. Además, se estima que los servicios posventa efectivos que ofrecen los fabricantes dentro de las economías acelerarán aún más la expansión durante el período de pronóstico.
Se espera que la región Asia-Pacífico experimente un crecimiento significativo durante el período de pronóstico debido al rápido crecimiento de las operaciones de exploración de petróleo y gas en la zona dentro de la región. La gran base de producción de artículos electrónicos de China la convierte en un importante contribuyente a la expansión del mercado regional.
La sección de países del informe también proporciona factores de impacto de mercado individuales y cambios en la regulación del mercado que afectan las tendencias actuales y futuras del mercado. Los puntos de datos como el análisis de la cadena de valor ascendente y descendente, las tendencias técnicas y el análisis de las cinco fuerzas de Porter, los estudios de casos son algunos de los indicadores utilizados para pronosticar el escenario del mercado para países individuales. Además, la presencia y disponibilidad de marcas globales y sus desafíos enfrentados debido a la competencia grande o escasa de las marcas locales y nacionales, el impacto de los aranceles nacionales y las rutas comerciales se consideran al proporcionar un análisis de pronóstico de los datos del país.
Cuota de mercado de la plataforma de ciencia de datos
El panorama competitivo del mercado proporciona detalles por competidor. Los detalles incluidos son una descripción general de la empresa, las finanzas de la empresa, los ingresos generados, el potencial de mercado, la inversión en investigación y desarrollo, las nuevas iniciativas de mercado, la presencia global, los sitios e instalaciones de producción, las capacidades de producción, las fortalezas y debilidades de la empresa, el lanzamiento de productos, la amplitud y variedad de productos, y el dominio de las aplicaciones. Los puntos de datos anteriores proporcionados solo están relacionados con el enfoque de las empresas en relación con el mercado.
Los líderes del mercado de plataformas de ciencia de datos que operan en el mercado son:
- IBM (Estados Unidos)
- DataRobot Inc., (Estados Unidos)
- apheris AI GmbH (Alemania)
- El ecosistema del talento digital (EE.UU.)
- Banda de datos (Israel)
- dotData (Estados Unidos)
- Explorium Inc., (Estados Unidos)
- Noogata (Israel)
- Tecton Inc., (Estados Unidos)
- Spell Designs Pty Ltd (Estados Unidos)
- Arrikto Inc., (Estados Unidos)
- Iterativo (EE.UU.)
- Google Inc (Estados Unidos)
- Microsoft (Estados Unidos)
- SAS Institute Inc., (Estados Unidos)
- Amazon Web Services, Inc. (Estados Unidos)
- The MathWorks, Inc. (Estados Unidos)
- Cloudera Inc., (Estados Unidos)
- Teradata (Estados Unidos)
- TIBCO Software Inc. (Estados Unidos)
- ALTERYX, INC. (EE.UU.)
- RapidMiner (Estados Unidos),
- Databricks (Estados Unidos)
- Snowflake Inc., (Estados Unidos)
- H2O.ai (Estados Unidos)
- Altair Inc., (Estados Unidos)
- Anaconda Inc., (Estados Unidos)
- SAP SE (Estados Unidos)
- Domino Data Lab Inc., (Estados Unidos)
- Dataiku (Estados Unidos)
Últimos avances en el mercado de plataformas de ciencia de datos
- En junio de 2024, IBM Corporation anunció una colaboración estratégica con Telefónica Tech destinada a impulsar la adopción de soluciones de inteligencia artificial (IA), análisis y gobernanza de datos de vanguardia. Esta asociación busca abordar las necesidades cambiantes de las empresas, permitiéndoles aprovechar las tecnologías avanzadas para mejorar la toma de decisiones, la eficiencia operativa y las experiencias de los clientes en un entorno empresarial cada vez más complejo.
- En marzo de 2024, Microsoft reveló una colaboración con NVIDIA enfocada en mejorar la innovación en el cuidado de la salud y las ciencias biológicas a través de la IA en la nube y las tecnologías de computación acelerada. Esta asociación tiene como objetivo revolucionar la atención al paciente al agilizar el acceso a la medicina de precisión y los diagnósticos impulsados por IA. Se espera que la iniciativa haga avanzar significativamente la industria de la salud al brindar soluciones más rápidas y precisas para diagnosticar y tratar a los pacientes, mejorando en última instancia los resultados de salud.
- En enero de 2023, Science Applications International Corp. presentó la plataforma de ciencia de datos "Tenjin", una solución versátil que admite el desarrollo de código bajo a código completo para aplicaciones de IA y aprendizaje automático. Con tecnología de Dataiku, Tenjin facilita todo el ciclo de vida del desarrollo de modelos de IA y ML, desde la implementación hasta la capacitación y la automatización, junto con herramientas avanzadas de visualización de datos. Esta plataforma tiene como objetivo simplificar procesos complejos, haciendo que la IA sea accesible para una gama más amplia de empresas.
- En octubre de 2022, IBM Corporation lanzó la biblioteca de cintas Diamondback, una solución de almacenamiento avanzada que utiliza tecnología LTO. Este innovador producto cuenta con una impresionante capacidad de hasta 27 petabytes (PB) de almacenamiento de datos dentro de un solo rack de servidores. Diamondback está diseñado para satisfacer las crecientes demandas de almacenamiento de datos, ofreciendo escalabilidad y confiabilidad para las organizaciones que necesitan administrar grandes cantidades de información de forma segura y eficiente.
- En junio de 2022, SAS Institute amplió sus capacidades con la adquisición de Kamakura Corporation, mejorando su cartera con soluciones de riesgo integradas. Esta adquisición se centra en la prestación de servicios profesionales especializados en gestión de activos y pasivos (ALM) y otros sectores financieros, incluida la banca. Al combinar recursos y experiencia, SAS tiene como objetivo ofrecer soluciones integrales que aborden los complejos desafíos de la gestión de riesgos, ayudando a las organizaciones a tomar decisiones financieras informadas y a afrontar las incertidumbres del mercado de manera eficaz.
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.