Mercado europeo de redes neuronales de aprendizaje profundo (DNN): tendencias de la industria y pronóstico hasta 2028

Solicitud de índiceSolicitud de índice Hable con el analistaHable con el analista Comprar ahoraComprar ahora Consultar antes de comprarConsultar antes Informe de muestra gratuitoInforme de muestra gratuito

Mercado europeo de redes neuronales de aprendizaje profundo (DNN): tendencias de la industria y pronóstico hasta 2028

  • ICT
  • Upcoming Report
  • Oct 2021
  • Europe
  • 350 Páginas
  • Número de tablas: 220
  • Número de figuras: 60

>Mercado europeo de redes neuronales de aprendizaje profundo (DNN), por componente (hardware, software y servicios), aplicación (reconocimiento de imágenes, procesamiento del lenguaje natural, reconocimiento de voz, minería de datos), usuario final (banca, servicios financieros y seguros (BFSI), TI y telecomunicaciones, atención médica, venta minorista, automoción, fabricación, aeroespacial y defensa, seguridad y otros), país (Francia, Alemania, Italia, España, Turquía, Bélgica, Rusia, Reino Unido, Países Bajos y resto de Europa): tendencias de la industria y pronóstico hasta 2028.

Mercado europeo de redes neuronales de aprendizaje profundo (DNN)

Análisis y perspectivas del mercado: mercado europeo de redes neuronales de aprendizaje profundo (DNN)

Data Bridge Market Research analiza que el mercado de redes neuronales de aprendizaje profundo (DNN) exhibirá una CAGR del 20,9% para el período de pronóstico de 2021-2028 y se espera que alcance el valor de mercado de USD 357,23 millones para 2028.

Las redes neuronales de aprendizaje profundo (DDN) son una tecnología basada en el aprendizaje automático que se utiliza principalmente para tomar decisiones, diagnosticar, determinar, predecir, llamar y resolver problemas en función de un diseño de proceso bien definido. Estas tecnologías se adoptan en toda la unidad en diversas aplicaciones, como seguridad de PC, reconocimiento de voz, reconocimiento de imágenes y videos, detección de fallas industriales, medicina y finanzas.

Se prevé que el rápido desarrollo y crecimiento de la calidad de la informática, la rápida adopción de nuevas tecnologías por parte de la mayoría y el rápido aumento de la variedad de datos de los usuarios por parte de diversas organizaciones impulsen el mercado. Se prevé que la creciente demanda de servicios de computación en la nube se oponga a la expansión de la industria. Se prevé que estos factores impulsen el mercado y actúen como propulsores del crecimiento.

La creciente digitalización a nivel mundial está impulsando el mercado mundial de redes neuronales de aprendizaje profundo. La transformación digital ayuda a adaptar la tecnología avanzada que brinda el beneficio de recopilar información, mientras que la información es una parte crítica y esencial de la inteligencia artificial. La información ayuda al mercado europeo de redes neuronales de aprendizaje profundo (DNN) a reconocer patrones y predecir.

Sin embargo, se espera que la falta de conocimiento sobre el elemento, las complejidades a la hora de implementar algoritmos y hardware de integración y, por lo tanto, la falta de una unidad de área de profesionales virtuales restrinjan el mercado.

Este informe de mercado de redes neuronales de aprendizaje profundo (DNN) proporciona detalles de nuevos desarrollos recientes, regulaciones comerciales, análisis de importación y exportación, análisis de producción, optimización de la cadena de valor, participación de mercado, impacto de los actores del mercado nacional y localizado, analiza oportunidades en términos de bolsillos de ingresos emergentes, cambios en las regulaciones del mercado, análisis de crecimiento estratégico del mercado, tamaño del mercado, crecimientos del mercado de categorías, nichos de aplicación y dominio, aprobaciones de productos, lanzamientos de productos, expansiones geográficas, innovaciones tecnológicas en el mercado. Para obtener más información sobre el mercado de redes neuronales de aprendizaje profundo (DNN), comuníquese con Data Bridge Market Research para obtener un informe de analistas; nuestro equipo lo ayudará a tomar una decisión de mercado informada para lograr el crecimiento del mercado.

Alcance y tamaño del mercado de redes neuronales de aprendizaje profundo (DNN) en Europa

El mercado de redes neuronales de aprendizaje profundo (DNN) está segmentado en función de los componentes, las aplicaciones y el usuario final. El crecimiento entre los diferentes segmentos le ayuda a obtener el conocimiento relacionado con los diferentes factores de crecimiento que se espera que prevalezcan en todo el mercado y a formular diferentes estrategias para ayudar a identificar las áreas de aplicación principales y la diferencia en su mercado objetivo.

  • Según los componentes, el mercado de redes neuronales de aprendizaje profundo (DNN) se divide en hardware, software y servicios.
  • Sobre la base de la aplicación, el mercado de redes neuronales de aprendizaje profundo (DNN) se segmenta en reconocimiento de imágenes, reconocimiento de voz, procesamiento del lenguaje natural y minería de datos.
  • Sobre la base del usuario final, el mercado de redes neuronales de aprendizaje profundo (DNN) en Europa se divide en banca, servicios financieros y seguros (BFSI), tecnología de la información y telecomunicaciones, atención médica, comercio minorista, automoción, fabricación, aeroespacial y defensa, seguridad y otros.

Análisis del mercado de redes neuronales de aprendizaje profundo (DNN) a nivel de país

Se analiza el mercado de redes neuronales de aprendizaje profundo (DNN) y se proporciona información sobre el tamaño del mercado y el volumen por país, componentes, aplicaciones y usuario final como se menciona anteriormente.

Los países cubiertos en el informe de mercado de redes neuronales de aprendizaje profundo (DNN) son Francia, Alemania, Italia, España, Turquía, Bélgica, Rusia, Reino Unido, Países Bajos y el resto de Europa.

La sección de países del informe de mercado de redes neuronales de aprendizaje profundo (DNN) también proporciona factores de impacto de mercado individuales y cambios en la regulación en el mercado a nivel nacional que afectan las tendencias actuales y futuras del mercado. Los puntos de datos como volúmenes de consumo, sitios y volúmenes de producción, análisis de importación y exportación, análisis de tendencias de precios, costo de las materias primas, análisis de la cadena de valor ascendente y descendente son algunos de los principales indicadores utilizados para pronosticar el escenario del mercado para países individuales. Además, se consideran la presencia y disponibilidad de marcas globales y sus desafíos enfrentados debido a la competencia grande o escasa de las marcas locales y nacionales, el impacto de los aranceles nacionales y las rutas comerciales al proporcionar un análisis de pronóstico de los datos del país.

Análisis del panorama competitivo y la cuota de mercado de las redes neuronales de aprendizaje profundo (DNN)

El panorama competitivo del mercado de redes neuronales de aprendizaje profundo (DNN) proporciona detalles por competidor. Los detalles incluidos son una descripción general de la empresa, las finanzas de la empresa, los ingresos generados, el potencial de mercado, la inversión en investigación y desarrollo, las nuevas iniciativas de mercado, la presencia global, los sitios e instalaciones de producción, las capacidades de producción, las fortalezas y debilidades de la empresa, el lanzamiento del producto, la amplitud y la variedad del producto, y el dominio de la aplicación. Los puntos de datos anteriores solo están relacionados con el enfoque de las empresas en el mercado de redes neuronales de aprendizaje profundo (DNN).

Los principales actores cubiertos en el informe de mercado de redes neuronales de aprendizaje profundo (DNN) son ALYUDA analysis, LLC, ALPHABET INC., IBM, Neural Technologies limited, NEURODIMENSION, INC., NEURALWARE, NVIDIA CORPORATION, SKYMIND INC, SAMSUNG, Qualcomm Technologies, Inc., Intel Corporation, Amazon internet Services, Inc., Microsoft, GMDH LLC., Sensory INC., Ward Systems cluster, Inc., Xilinx Inc., Starmind entre otros. Los analistas de DBMR comprenden las fortalezas competitivas y brindan un análisis competitivo para cada competidor por separado.


SKU-

Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo

  • Panel de análisis de datos interactivo
  • Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
  • Acceso de analista de investigación para personalización y consultas
  • Análisis de la competencia con panel interactivo
  • Últimas noticias, actualizaciones y análisis de tendencias
  • Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Solicitud de demostración

Metodología de investigación

La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.

La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.

Personalización disponible

Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados ​​en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.

Preguntas frecuentes

The Europe Deep Learning Neural Networks (DNNs) Market size will be worth USD 357.23 million by 2028.
The Europe Deep Learning Neural Networks (DNNs) Market growth rate will be 20.9% by 2028.
The Rapid development and growth within the quality of computer science, speedy adoption of newer technology by lots are the growth drivers of the Europe Deep Learning Neural Networks (DNNs) Market.
The components, applications and end user are the factors on which the Europe Deep Learning Neural Networks (DNNs) Market research is based.
The major companies in the Europe Deep Learning Neural Networks (DNNs) Market are ALYUDA analysis, LLC, ALPHABET INC., IBM, Neural Technologies restricted, NEURODIMENSION, INC., NEURALWARE, NVIDIA CORPORATION, SKYMIND INC, SAMSUNG, Qualcomm Technologies, Inc., Intel Corporation, Amazon internet Services, Inc., Microsoft, GMDH LLC., Sensory INC., Ward Systems cluster, Inc., Xilinx Inc., Starmind.