Un equipo de investigadores del Departamento de Bioinformática Estructural y Biología de Redes del IRB Barcelona ha desarrollado una herramienta que predice la actividad biológica de compuestos químicos, que es la clave para evaluar su potencial terapéutico. Los investigadores utilizaron redes neuronales artificiales para obtener datos experimentales de un millón de compuestos y desarrollaron muchas herramientas para evaluar cada tipo de molécula. El equipo de Bioinformática Estructural y Biología de Redes, dirigido por el Dr. Patrick Aloy, investigador de ICREA, utilizó modelos computacionales de aprendizaje automático profundo para completar la recopilación de información sobre la actividad biológica de aproximadamente 1 millón de moléculas e introdujo una herramienta para predecir la actividad biológica de cualquier molécula. incluso cuando los datos experimentales no están disponibles.
Este nuevo método se basa en Chemical Checker, que es, con diferencia, la base de datos de perfiles de bioactividad más grande para medicamentos falsos desarrollada por el mismo laboratorio y lanzada en 2020. La base de datos recopila información de 25 áreas bioactivas para cada molécula. Estas áreas están relacionadas con la estructura química de la molécula, el objetivo con el que interactúa y las alteraciones que provoca a nivel clínico o celular. Sin embargo, para la mayoría de los compuestos, esta información detallada sobre el mecanismo de acción es incompleta. Esto significa que para un compuesto determinado, puede haber una o dos áreas de información biológicamente activas disponibles, pero no las 25. Con este nuevo descubrimiento en desarrollo, los investigadores compararían toda la información experimental disponible con técnicas de aprendizaje automático profundo para completar todos los perfiles de actividad. para todos los compuestos, desde el nivel químico hasta el clínico.
La nueva herramienta también nos permite predecir el espacio de actividad biológica de nuevas moléculas, lo cual es esencial para el proceso de descubrimiento de fármacos porque podemos seleccionar los candidatos más adecuados y descartar aquellos que no funcionan por una u otra razón.