El reconocimiento óptico de caracteres (OCR), una técnica de digitalización bien establecida, se utiliza comúnmente para convertir el texto de documentos escaneados en un formato editable y con capacidad de búsqueda en la computadora. Pero no puede digitalizar otros documentos como manuscritos musicales y otros tipos de manuscritos. Un nuevo enfoque desarrollado por un equipo de la Universidad Bina Nusantara, situada en Yakarta, Indonesia, utiliza aprendizaje automático profundo y una red neuronal convolucional entrenada para reconocer los matices de la notación musical escrita en los manuscritos.
El sistema requiere que la clave, el pentagrama y la clave musical estén en posición, pero se pueden asignar fácilmente en una plantilla. Al convertir un manuscrito escaneado, detecta la posición de cada nota en el pentagrama para definir el tono. El siguiente paso utiliza un algoritmo paralelo para detectar la duración de cada nota e identificar la posición de silencios, silencios y otras características similares en un manuscrito. Una vez completamente digitalizado, es una cuestión trivial con el software actual "reproducir" el manuscrito con todos los sonidos instrumentales posibles en la computadora o incluso correlacionar una partitura lírica con la música y dejar que la computadora cante la canción. Los científicos creen que una vez madurado, OMR tendría muchas aplicaciones en la interpretación musical, la educación musical y el archivo de manuscritos musicales. El equipo sugiere que su enfoque podría permitir a los desarrolladores de "aplicaciones" de software escribir un programa para teléfonos inteligentes o tabletas que permitiría a cualquiera, por ejemplo, escanear rápidamente una partitura y realizar OMR en ese manuscrito.