La Inteligencia Artificial, o IA, se utiliza ahora en casi todos los sectores, y las personas dependen en gran medida del aprendizaje automático y la inteligencia artificial, ya que reducen gran parte de la carga de trabajo. La industria de los chips está creciendo muy rápidamente y su producción también está creciendo muy rápidamente porque muchas industrias la están utilizando a gran escala. Actualmente, los chips de computadora se fabrican utilizando un tipo especial de tecnología llamada deposición de capas atómicas (ALD), que tiene la capacidad de crear películas tan finas como un átomo de espesor. Esta tecnología se utiliza mucho para desarrollar dispositivos semiconductores, pero también tiene aplicaciones en baterías de litio, células solares y otros campos relacionados con la energía.
Hoy en día, los fabricantes confían cada vez más en ALD para fabricar nuevos tipos de películas, pero lleva tiempo descubrir cómo ajustar el proceso para cada nuevo material. Parte del problema es que los investigadores utilizan principalmente prueba y error para determinar las condiciones óptimas de crecimiento. Sin embargo, un estudio publicado recientemente, uno de los primeros en este campo científico, sugiere que el uso de la inteligencia artificial (IA) puede ser más eficiente. En el estudio ACS Applied Materials and Interfaces, investigadores del Laboratorio Nacional Argonne del Departamento de Energía (DOE) del USD describen varios enfoques basados en IA para la optimización autónoma de los procesos AML. Su trabajo describe las fortalezas y debilidades relativas de cada enfoque, así como conocimientos que pueden usarse para desarrollar nuevos procesos de manera más eficiente y económica. "Todos estos algoritmos proporcionan una forma mucho más rápida de converger hacia combinaciones óptimas porque no se pierde tiempo poniendo una muestra en el reactor, sacándola, tomando medidas, etc. como lo haría normalmente hoy en día, un bucle en tiempo real que conectado al reactor", afirmó Angel YanguasGil, científico senior de materiales de Argonne y coautor del estudio.