Descripción general

La industria automotriz se está transformando, impulsada por los avances en las tecnologías de inteligencia artificial (IA) y aprendizaje automático (ML). La IA y el aprendizaje automático han allanado el camino para automóviles más seguros e inteligentes, ofreciendo soluciones innovadoras que mejoran el rendimiento del vehículo, mejoran las características de seguridad y revolucionan la experiencia de conducción. La IA y el ML encuentran sus aplicaciones a través de la cadena de valor de la automoción. En la actualidad, se está implementando en la fabricación de automóviles, incluido el diseño, la cadena de suministro, la producción y la posproducción. La IA y el ML se están implementando en los sistemas de 'asistencia' al conductor y de 'evaluación' del riesgo del conductor; Esto está cambiando la forma en que funciona el transporte. La IA también está cambiando los servicios posventa, como el mantenimiento predictivo y los seguros. El uso del aprendizaje automático en la industria automotriz ha creado nuevos productos inteligentes y formas de trabajo optimizadas. Este estudio de caso se centra en Data Bridge Market Research (DBMR), una firma consultora líder en investigación de mercado, y su papel para ayudar a un cliente a aprovechar la IA y el aprendizaje automático para construir automóviles más seguros e inteligentes.

Actualmente, la Inteligencia Artificial (IA) se utiliza ampliamente en software tradicional como Autodesk y muchos otros. Funciones de IA de alta dimensión que se pueden utilizar para realizar múltiples estudios de diseño. El uso de la IA comienza en la etapa de desarrollo de un automóvil nuevo. Con el uso de la realidad virtual y aumentada, es posible desarrollar mejores ideas de diseño y corregir errores antes de que se vuelvan costosos. Un sistema inteligente puede brindar muchas ideas de diseño para futuros repuestos y modelos de automóviles, y las empresas automotrices pueden elegir las mejores.

Antecedentes del cliente:

El cliente era un destacado fabricante de automóviles que aspiraba a mantenerse a la vanguardia de los avances tecnológicos. Al reconocer el potencial de la IA y el aprendizaje automático para transformar la industria automotriz, el cliente buscó integrar estas tecnologías en sus vehículos para mejorar la seguridad, optimizar el rendimiento y satisfacer las demandas cambiantes de los consumidores.

Desafíos que enfrenta el cliente:

El cliente enfrentó varios desafíos al implementar tecnologías de IA y ML en sus automóviles, entre ellos:

  • Identificar los casos de uso más efectivos para la integración de IA y ML para mejorar la seguridad de los vehículos
  • Superar los desafíos de calidad y disponibilidad de datos para entrenar modelos de IA y ML
  • Garantizar el cumplimiento normativo y abordar los problemas de seguridad asociados con las funciones impulsadas por IA
  • Navegando por las complejidades de integrar tecnologías de IA y ML en arquitecturas de vehículos existentes
  • Quería saber sobre el mercado total direccionable (TAM) de automoción en IA y ML a nivel global y en las distintas regiones, como Asia-Pacífico, América del Norte, Europa, Medio Oriente y África, y América del Sur.
  • Quería saber sobre los criterios de selección de proveedores y cómo la empresa puede seleccionar cualquier proveedor. ¿Qué consejo debe tener en cuenta el cliente al elegir el proveedor?
  • Evaluación del impacto de la IA y el ML en los modelos de negocio existentes y las preferencias de los clientes
  • Identificar oportunidades para aprovechar los algoritmos de IA y el aprendizaje automático para las capacidades de conducción autónoma. Tasa de crecimiento futuro para el mercado requerido.

El cliente se acercó a Data Bridge Market Research para abordar estos desafíos y comprender el escenario actual de la IA y el ML en el mercado automotriz. Data Bridge Market Research es una firma consultora de investigación de mercado confiable y reconocida por su experiencia en tecnologías emergentes. Además, el cliente quería conocer las tendencias y tecnologías actuales junto con un estudio detallado de los principales actores que las están adoptando en el mercado automotriz para que puedan expandir su negocio en consecuencia. DBMR debía realizar un análisis integral del panorama del mercado, identificar tendencias relevantes y proporcionar información útil para guiar la estrategia de implementación de IA y ML del cliente.

Enfoque de investigación de mercado de DBMR para superar el desafío del cliente

DBMR adoptó el siguiente enfoque para ayudar al cliente:

  • Análisis de mercado: DBMR realizó un análisis exhaustivo de la industria automotriz, examinando las tendencias del mercado, el análisis de la competencia y las preferencias de los clientes. Este análisis proporcionó información valiosa sobre las posibles aplicaciones de la IA y el aprendizaje automático en la construcción de automóviles más seguros e inteligentes.
  • Identificación de casos de uso: en estrecha colaboración con las partes interesadas del cliente, DBMR identificó casos de uso específicos en los que la IA y el aprendizaje automático podrían mejorar significativamente la seguridad de los vehículos. Estos casos de uso abarcaron desde sistemas avanzados de asistencia al conductor (ADAS) hasta mantenimiento predictivo y sistemas de navegación inteligentes.
  • Análisis de datos y desarrollo de modelos: DBMR ayudó al cliente a superar los desafíos de disponibilidad y calidad de los datos al analizar sus fuentes de datos existentes y recomendar estrategias para recopilar y seleccionar datos de alta calidad para entrenar modelos de IA y ML. DBMR también ayudó a desarrollar modelos personalizados de IA y ML adaptados a los casos de uso específicos del cliente.
  • Seguridad y cumplimiento normativo: DBMR analizó exhaustivamente las normas y estándares de seguridad aplicables a las funciones automotrices impulsadas por IA. Esta evaluación garantizó que las implementaciones de IA y ML del cliente cumplieran con los requisitos de seguridad necesarios, abordando los riesgos potenciales y garantizando la confianza del consumidor.
  • Análisis competitivo: Para seguir siendo competitivo en la industria automotriz rígida, el cliente necesitaba un análisis exhaustivo de la participación de mercado y un análisis de desarrollo estratégico. El cliente quería que DBMR evaluara su posición actual en el mercado, identificara sus fortalezas y debilidades y evaluara las estrategias empleadas por sus competidores. Este análisis ayudaría al cliente a diseñar estrategias comerciales efectivas para diferenciarse, identificar oportunidades de crecimiento y obtener una ventaja competitiva.
  • Criterios de selección de proveedores: el cliente necesitaba orientación para seleccionar proveedores confiables para adquirir aditivos de alta calidad para mejorar su proceso de costos. Querían que DBMR les ayudara a definir los criterios de selección de proveedores basados ​​en la calidad, la confiabilidad, los precios y las capacidades de entrega. El cliente esperaba que DBMR lo ayudara a establecer una cadena de valor mediante la identificación de proveedores confiables que pudieran cumplir consistentemente con sus requisitos como el cliente desea.

Recomendaciones e implementación

Con base en los hallazgos de la investigación de mercado, Data Bridge Market Research proporcionó un conjunto de recomendaciones al cliente, que incluyen

  • Hoja de ruta de integración: DBMR desarrolló una hoja de ruta de implementación integral que describe los pasos necesarios para integrar las tecnologías de IA y ML en los procesos de producción de vehículos del cliente. La hoja de ruta abordó factores como la recopilación de datos, el desarrollo de modelos, la integración de hardware y la validación de software.
  • Asociaciones y adquisición de talentos: DBMR ayudó al cliente a identificar asociaciones estratégicas con proveedores de tecnología de inteligencia artificial y aprendizaje automático y recomendó posibles colaboraciones con instituciones de investigación o empresas emergentes. Además, DBMR asesoró al cliente sobre estrategias de adquisición de talento para garantizar el acceso a la experiencia necesaria para una integración exitosa de AI y ML.
  • Pruebas y validación: DBMR apoyó al cliente en el diseño de protocolos de prueba rigurosos y procedimientos de validación para funciones de IA y ML. Esto garantizó la funcionalidad, confiabilidad y seguridad de los sistemas impulsados ​​por IA antes de su implementación en vehículos de producción.

Resultados e Impacto Empresarial

La implementación de las recomendaciones de DBMR arrojó resultados significativos para el cliente:

  • Funciones de seguridad mejoradas: al integrar tecnologías de IA y ML, el cliente mejoró las funciones de seguridad de su vehículo, incluidos sistemas avanzados de asistencia al conductor (ADAS) que podían detectar y reaccionar ante peligros potenciales en tiempo real. Esto resultó en una reducción de los accidentes, una mayor seguridad vial y una mayor confianza del conductor.
  • Rendimiento optimizado: los vehículos del cliente experimentaron un mejor rendimiento y eficiencia de combustible a través de algoritmos de optimización basados ​​en IA y ML. Estos algoritmos optimizaron los sistemas del vehículo basándose en datos y condiciones de conducción en tiempo real, como el rendimiento del motor, la transmisión y la aerodinámica.
  • Experiencia de usuario personalizada: las tecnologías de inteligencia artificial y aprendizaje automático permitieron al cliente brindar experiencias de usuario personalizadas mediante el análisis del comportamiento, las preferencias y los datos históricos del conductor. Esto dio como resultado funciones personalizadas, sistemas de información y entretenimiento inteligentes y una integración perfecta con dispositivos móviles.
  • Ventaja competitiva: al aprovechar eficazmente las tecnologías de inteligencia artificial y aprendizaje automático, el cliente obtuvo una ventaja competitiva en la industria automotriz. Se posicionaron como líderes en la construcción de automóviles más seguros e inteligentes, atrayendo clientes expertos en tecnología y diferenciando su marca de la competencia.

Conclusión:

Data Bridge Market Research jugó un papel importante a la hora de impulsar el crecimiento empresarial del cliente mediante la adopción estratégica de tecnologías de inteligencia artificial y aprendizaje automático. Los fabricantes de automóviles ahora buscan aprovechar la IA y el aprendizaje automático para reducir costos, optimizar productos, mejorar la eficiencia, potenciar los ciclos de desarrollo y crear un ecosistema más sostenible. DBMR ayuda al cliente realizando una investigación de mercado integral, brindando información valiosa y ayudando en la implementación. DBMR permitió al cliente aprovechar eficazmente las capacidades de asistente virtual y conducción autónoma. Este estudio de caso demuestra los resultados positivos de aprovechar los servicios de consultoría e investigación de mercado especializados. Como resultado, el cliente logró experiencias de usuario mejoradas, capacidades avanzadas de conducción autónoma y mayores oportunidades comerciales, solidificando su posición como líder del mercado en la industria automotriz de conducción autónoma y asistente virtual dinámico y más seguro.

Obtenga acceso instantáneo

Contáctenos