Descripción general
Al emplear algoritmos en lugar de humanos para crear modelos de aprendizaje, el aprendizaje automático automatizado (AML) está ayudando a disminuir numerosos procesos repetitivos y tediosos, incluida la selección de parámetros y la limpieza de datos. El proceso de formulación y prueba de hipótesis continuará gracias al aprendizaje automático, un componente de la ciencia de datos. El objetivo de autoML es automatizar estos procesos para encontrar el algoritmo óptimo dentro del rango de funciones, algoritmos e hiperparámetros accesibles. Se espera que autoML facilite la automatización inteligente de procesos repetitivos del flujo de trabajo de ML. Esto hace posible que los recursos de alto valor pasen del trabajo monótono al análisis y evaluación de los modelos de mejor rendimiento que ofrecen valor. Como resultado, el tiempo necesario para producir modelos y soluciones basadas en ellos se reducirá significativamente.
Aunque los sistemas AutoML son capaces de producir modelos predictivos con la suficiente rapidez como para lograr un rendimiento casi óptimo, su alcance aún es limitado y su promesa total aún no se ha cumplido. Aunque AutoML se está volviendo cada vez más frecuente en cuanto a ingeniería y preparación de datos, todavía hay algunas aplicaciones altamente dependientes del dominio en las que es más un arte que una ingeniería. AutoML desempeñará un papel importante en la aceleración de la adopción de soluciones basadas en ML, ya que es un tema de investigación activo que está logrando grandes avances (con varios actores abordando los desafíos existentes para automatizar el proceso completo de desarrollo de modelos).
Desafíos del cliente
El cliente quería analizar las oportunidades y desafíos en relación con el aprendizaje automático automatizado (AML). El principal objetivo del cliente es alinear su oferta de soluciones con las próximas demandas de los clientes para una mejor toma de decisiones, bajos costos, mayor eficiencia, innovación y obtener una ventaja competitiva al mantenerse a la vanguardia de los avances tecnológicos.
Los siguientes son los requisitos solicitados por el cliente:
- Tamaño total del mercado direccionable (TAM) y tasa de crecimiento interanual tanto a nivel regional como nacional
- Tendencias tecnológicas actuales y futuras, junto con los desafíos que se enfrentan durante la implementación.
- Análisis comparativo de la empresa de los actores líderes y futuros, incluida la participación de mercado, los ingresos rastreables, las iniciativas estratégicas, la adopción tecnológica, los criterios de selección de proveedores y otros.
- Estrategia de inversión y financiación por parte de diferentes actores.
- Evaluación de oportunidades y atractivo de mercado.
- Aplicaciones emergentes del aprendizaje automático automatizado (AML)
- Requisitos regulatorios y cumplimiento a nivel de país
Enfoque DBMR/Metodología de investigación
DBMR llevó a cabo un análisis exhaustivo del panorama del mercado, identificando tendencias relevantes y brindando información útil para guiar al cliente. Seguimos el modelo de trípode para analizar y validar datos para proporcionar información valiosa basada en los requisitos del cliente. El enfoque o metodología de investigación de DBMR para analizar y estimar el aprendizaje automático automatizado (AML) se explica a continuación:
Nuestro enfoque implica el uso de metodologías de investigación tanto primarias como secundarias para estimar, analizar y validar los datos.
DBMR llevó a cabo investigaciones secundarias y primarias con métodos tanto de arriba hacia abajo como de abajo hacia arriba para el análisis y validación de datos. Este enfoque se utilizó para acceder a datos tanto cualitativos como cuantitativos para cada segmento mencionado en datos globales, regionales y nacionales.
- Investigación secundaria compuesta por datos publicados por diferentes asociaciones gubernamentales, publicaciones certificadas, presentaciones para inversores, informes anuales presentados ante la SEC, sitio web de la empresa, revistas, libros blancos y artículos de autores reconocidos y otros.
- La investigación primaria incluye entrevistas en profundidad con varios encuestados principales a través de llamadas en frío, LinkedIn, correo electrónico y otros, con participantes clave de la industria, expertos en la materia (PYME), ejecutivos de nivel C de actores clave del mercado y consultores de la industria para validar información tanto cualitativa como cuantitativa. Esto lo realizan básicamente nuestro equipo primario dedicado y personas (terceros) presentes en el sitio local. Además, incluso preparamos un cuestionario exhaustivo y una guía de discusión que incorpora puntos de datos tanto estructurados como no estructurados para llevar a cabo un enfoque basado en la discusión.
Se siguió la metodología anterior para analizar los requisitos del cliente:
- El tamaño del mercado se ha obtenido considerando un enfoque tanto de arriba hacia abajo como de abajo hacia arriba.
- Análisis competitivo: análisis de la empresa basado en ingresos rastreables, ofertas de soluciones, fortalezas y debilidades, participación de mercado, alcance geográfico, iniciativas estratégicas e inversión y financiamiento, entre otros, para identificar proveedores clave, proveedores potenciales, disruptores del mercado y actores de nicho para ganar competitividad. ventaja
- También se estudiaron factores como impulsores, restricciones, oportunidades y desafíos que afectan al mercado en general.
- Impacto de factores internos y externos, a saber, problemas de compatibilidad y complejidad, presencia de tecnología sustituta, entorno regulatorio y cooperación, COVID-19 y la guerra entre Rusia y Ucrania tanto en el lado de la demanda como en el de la oferta.
- También se llevó a cabo una evaluación exhaustiva del panorama regulatorio junto con una investigación en profundidad para analizar los clientes potenciales para este mercado. Además, la estrecha colaboración con las partes interesadas del cliente nos ayuda a identificar aplicaciones específicas o casos de uso donde este mercado podría aportar un valor significativo.
Por lo tanto, siguiendo el enfoque mencionado anteriormente, se proporcionaron al cliente los conocimientos del mercado correspondientes.
Soluciones de negocios
Las siguientes son las soluciones proporcionadas al analizar el mercado de soluciones de aprendizaje automático (AML):
- Se proporcionó el tamaño del mercado y la CAGR de la solución de aprendizaje automático automatizado (AML) a nivel global, regional y nacional para comprender el potencial de mercado para cada segmento.
- Se proporcionó un análisis detallado sobre el aprendizaje automático automatizado (AML) junto con sus tendencias de implementación, como la normalización de datos, la limpieza de datos y la transformación de datos, a nivel de país. AML ayudará a minimizar costos, resultados más rápidos (análisis de datos) y toma de decisiones, operaciones optimizadas con una preformación mejorada y una ventaja más competitiva.
- Se compartió un análisis comparativo de la empresa en términos de perfil de la empresa, posicionamiento y cuadrícula de aplicaciones, panorama de la empresa, FODA, iniciativas estratégicas y otros con el fin de identificar la competencia en el mercado y obtener una ventaja competitiva.
- También se proporcionó información sobre los avances tecnológicos, incluida la computación basada en la nube, la inteligencia artificial, la robótica y otros, junto con otras oportunidades y desafíos de mercado que afectan al mercado en general. Se ha observado que el modelo en la nube es más fácil de acceder, más escalable y flexible que el modelo local. Además, este es un modelo rentable, ya que ofrece un modelo de pago por uso, por lo que será muy útil para todas las organizaciones, especialmente las pequeñas y medianas empresas.
- En cuanto a la huella regional, América del Norte representa la máxima participación de mercado debido a la presencia de empresas líderes que satisfacen la demanda de implementación del aprendizaje automático en varias industrias de usuarios finales, incluidas BFSI, atención médica y venta minorista, entre otras.
Impacto de negocios
El cliente tenía una visión clara sobre la competitividad del mercado, la próxima implementación tecnológica y los pasos/planes estratégicos que le ayudarán a atender a usuarios finales destacados en diferentes países. La empresa ha mejorado sus tasas de conversión a través de su última oferta automatizada, que proporciona la solución más eficaz en diferentes puntos del recorrido del comprador.
Conclusión
Data Bridge Market Research ha proporcionado información detallada relacionada con el mercado del aprendizaje automático automatizado (AML) para satisfacer cada requisito. Además de esto, la información fáctica y consolidada del informe ayudará al cliente a evaluar el crecimiento de la empresa en términos de penetración tecnológica y también podrá utilizarse para la toma de decisiones y la planificación futura. Aparte de esto, el cliente puede incluso acceder/captar las oportunidades de negocio a partir de la información de los informes.