Artículos

14 de diciembre de 2022

Transformación de la industria energética impulsada por la IA

  • Una investigación reciente muestra que Europa es una de las principales regiones en innovación relacionada con la energía.
  • Una de las fuerzas clave detrás del cambio hacia energías bajas en carbono son los automóviles eléctricos.

Data Bridge Market Research analiza que el mercado de estaciones de carga de vehículos eléctricos se valoró en 6,97 mil millones de dólares en 2021 y se espera que alcance los 167,52 mil millones de dólares en 2029, registrando una tasa compuesta anual del 48,80% durante el período previsto de 2022 a 2029. La creciente popularidad y El uso de vehículos eléctricos ha puesto de relieve la necesidad de desarrollar infraestructuras de carga. Por ejemplo, China, Estados Unidos y Alemania están gastando mucho en infraestructura de carga de vehículos eléctricos (EV) y en investigación y desarrollo para técnicas de carga más rápidas y eficientes. ABB (Suiza), Shell plc (Reino Unido), ChargePoint (EE.UU.), Tesla (EE.UU.), BYD (China), bp Chargemaster (Reino Unido), Webasto Thermo & Comfort (Alemania), Schneider Electric (Francia), Blink Charging Co. (EE.UU.), Groupe Renault (Francia), Phihong USA Corp. (EE.UU.), entre muchos otros, son algunos de los principales actores que operan en el mercado.

Para saber más sobre el estudio, visite: https://www.databridgemarketresearch.com/es/reports/global-electric-vehicle-charging-stations-market

Uno de los pasos esenciales para resolver los problemas causados ​​por la catástrofe climática es la transición a energías bajas en carbono (LCE). Los límites de temperatura del Acuerdo Climático de París pueden superarse si no se reducen las emisiones y no se amplía el uso de energía más limpia. Según el segundo estudio sobre el desarrollo de las tecnologías necesarias para apoyar el cambio hacia formas de energía más ecológicas, publicado por la Oficina Europea de Patentes (EPO) y la Agencia Internacional de Energía (AIE), así es. La EPO y la AIE han revisado las bases de datos internacionales de patentes para encontrar patrones en la innovación, contando casos en los que se han presentado patentes en múltiples oficinas, conocidas como familias internacionales de patentes, para medir el progreso logrado hasta ahora (IPF). Según el artículo, "los datos de esta patente ofrecen indicadores tempranos de avances tecnológicos que seguramente afectarán la economía y, por lo tanto, pueden ilustrar cómo la innovación está impulsando la transición energética".

Growth of Low Carbon Energy

Fig.1: Crecimiento global de la energía baja en carbono

Fuente: Oficina Europea de Patentes

Entre 2014 y 2016, hubo una desaceleración en la expansión de las CPI para energía verde. Pero según el informe de la EPO/AIE, vuelve a aumentar. Además, el aumento de las patentes relacionadas con LCE coincide con una disminución en el uso de combustibles fósiles.

La inteligencia artificial (IA), como ocurre en todas las industrias, está revolucionando las industrias de la energía y los servicios públicos. Para garantizar que la energía se suministre cuando y donde se necesite con la menor cantidad de desperdicio, se utiliza para estimar la demanda y controlar la distribución de los recursos. Esto es crucial para el sector de las energías renovables porque con frecuencia la energía renovable no es adecuada para el almacenamiento a largo plazo y debe utilizarse lo antes posible una vez producida. Según el Foro Económico Mundial, la IA será crucial para el cambio global hacia las energías renovables. Un aumento de la eficiencia resultará de predicciones más precisas de la oferta y la demanda.

Los modelos descentralizados de generación y distribución de energía también están reemplazando a los centralizados. En estos modelos, redes eléctricas localizadas y más pequeñas (como parques solares) producen más energía, y coordinar la integración de estas redes requiere algoritmos sofisticados de IA. El plan es construir una "capa de coordinación inteligente" que se ubicará entre la infraestructura eléctrica y los edificios donde las personas y las cosas usan electricidad.

En 2022, podemos anticipar más innovación por parte de las nuevas empresas que utilizan la IA de nuevas formas. A modo de ejemplo, Likewatt en Alemania desarrolló Optiwize, un servicio que estima las emisiones de dióxido de carbono y el consumo de energía para ayudar a los consumidores a monitorear los efectos de su consumo de energía en tiempo real y tomar decisiones más informadas sobre sus suministros de energía. Para aumentar la eficiencia en la producción de energía renovable, otras empresas están creando tecnología para el mantenimiento predictivo. Un sistema energético más integrado y electrificado con una mayor interacción entre los sectores de energía, transporte, industria y construcción es el resultado de los intentos de descarbonizar el sistema energético mundial. Los altos grados de descentralización en el sector energético también están siendo causados ​​por el esfuerzo por descarbonizar el suministro de energía. Para gestionar este sistema cada vez más complejo y optimizarlo para lograr las menores emisiones de gases de efecto invernadero, se necesitarán niveles considerablemente mayores de cooperación y adaptabilidad por parte de todos los actores del sector, incluidos los consumidores.

Con aplicaciones potenciales que van desde la optimización e integración efectiva de recursos variables de energía renovable en la red eléctrica hasta el apoyo a un sistema de distribución de electricidad proactivo y autónomo y la apertura de nuevas fuentes de ingresos para la flexibilidad del lado de la demanda, la IA tiene un potencial significativo para respaldar y acelerar una transición energética fiable y de menor coste. La búsqueda de materiales de alto rendimiento que sustentan las tecnologías de almacenamiento y energía sostenible más nuevas puede beneficiarse significativamente del uso de la IA. Sin embargo, a pesar de su potencial, la IA se utiliza ocasionalmente en el sector energético, principalmente en programas experimentales para el mantenimiento proactivo de activos. Si bien es eficaz, la IA tiene un potencial mucho mayor de lo que se aprecia ahora para acelerar la transición energética mundial. A continuación se analiza cómo la IA afectará al sector energético a través de una amplia gama de aplicaciones:

Top Applications of AI in the Energy Industry

Fig.2: Principales aplicaciones de la IA en la industria energética

  • Redes inteligentes- Para volverse "inteligentes", las redes ahora pueden conectarse a sensores, herramientas de análisis de datos, sistemas de almacenamiento de energía, plataformas de gestión de energía y otras tecnologías energéticas. Los proveedores de energía pueden utilizar redes inteligentes para recopilar datos sobre el consumo de energía de cada dispositivo de la red y crear proyectos de eficiencia energética para sus clientes. Además, permite el seguimiento casi en tiempo real del uso y los flujos de energía por parte de las empresas de energía. Luego, con sistemas automatizados de respuesta a la demanda que pueden cortar la energía durante las horas pico, las empresas de energía pueden minimizar el uso de energía. Como consecuencia, tanto los hogares como los proveedores de energía pueden ahorrar energía. Una microrred es una pequeña red eléctrica que puede funcionar independientemente de la red principal. Los sistemas de control de microrredes utilizan la inteligencia artificial y el aprendizaje automático para optimizar el uso de la energía y controlar el flujo de energía. Debido a que pueden ofrecer seguridad energética durante emergencias y simplificar la integración de fuentes de energía renovables en la red que las redes de energía tradicionales, las microrredes están ganando popularidad.
  • Gestión y seguridad de la red La IA se utiliza para gestionar los flujos de energía dentro y entre edificios, empresas, baterías de almacenamiento, fuentes de energía renovables, microrredes y la red eléctrica principal con el fin de optimizar los sistemas energéticos. Esto reduce el desperdicio de energía y al mismo tiempo aumenta la conciencia de los consumidores sobre el uso de la energía. A pesar de que las fuentes de energía renovables intermitentes, como la eólica y la solar, están ganando popularidad. Como resultado, estas fuentes de energía no siempre están disponibles cuando se necesitan. Dado que la red energética debe gestionar la energía en tiempo real a medida que se crea, esto plantea un desafío. Las empresas de energía pueden predecir cuándo estará disponible la electricidad renovable y gestionar las redes energéticas en consecuencia con la ayuda de la inteligencia artificial y el aprendizaje automático. Los robots también se emplean para instalaciones de energía, mantenimiento de redes y seguimiento de la producción y el consumo de energía. Para reparar tuberías, turbinas eólicas y otras infraestructuras energéticas, se pueden utilizar robots. Las empresas de energía pueden aumentar aún más la eficiencia y reducir costos automatizando estos procesos. Un sistema sofisticado como la red eléctrica está abierto a los piratas informáticos. Al frustrar los ciberataques antes de que ocurran, la IA y el aprendizaje automático pueden aumentar la seguridad de las infraestructuras eléctricas. Para ello, se utilizará el análisis de datos para encontrar tendencias en los datos energéticos que podrían ser signos de un ciberataque. La inteligencia artificial y el aprendizaje automático se pueden utilizar para reaccionar ante un ciberataque una vez que se ha detectado.
  • Detección de robo de energía El robo y el fraude de electricidad cuestan al sector de la energía y los servicios públicos hasta 96 mil millones de dólares al año, con pérdidas de hasta 6 mil millones de dólares sólo en Estados Unidos. La extracción ilícita de energía de la red se conoce como robo de energía. La distorsión deliberada de los datos energéticos o del uso de energía se conoce como fraude energético. Estas anomalías pueden ser encontradas automáticamente y señaladas para su resolución por parte de las empresas energéticas mediante inteligencia artificial y aprendizaje automático. Las empresas de energía pueden hacer esto para salvaguardar sus recursos, reducir el desperdicio de energía y ahorrar dinero.
  • Producción mejorada y aumentada- El sector energético también está utilizando la inteligencia artificial y el aprendizaje automático para aumentar la producción. Por ejemplo, las corporaciones de petróleo y gas utilizan algoritmos de aprendizaje automático para ubicar mejor los pozos e impulsar la producción. Estas empresas pueden decidir dónde perforar en busca de petróleo y gas de manera más efectiva analizando los datos obtenidos de estudios sísmicos y otras fuentes. Esto mejorará la eficiencia energética y dará como resultado un sistema energético más limpio y eficaz que será más sencillo de gestionar para los proveedores de energía.
  • Almacenamiento de energía y análisis predictivo. Para 2030, se espera que el mercado de almacenamiento de energía se haya multiplicado por 20. Se pueden incluir tecnologías inteligentes de almacenamiento de energía en la red energética para mejorar la eficacia de la gestión energética. Las empresas eléctricas ahora pueden suministrar energía cuando sea necesaria, incluso si su suministro energético actual es insuficiente, utilizando el almacenamiento de energía para construir plantas de energía virtuales. Esto reduce la necesidad de que las empresas energéticas construyan nuevas centrales eléctricas. Los cambios futuros en la demanda de energía se pueden predecir mediante análisis predictivos. Luego se podrá construir la infraestructura adecuada para planificar el futuro y satisfacer las necesidades energéticas. Las empresas de energía también pueden pronosticar cuándo es más probable que una máquina o equipo funcione mal mediante el empleo de análisis predictivos. Esto no sólo ayuda a prevenir cortes de energía imprevistos, sino que también ayuda a las empresas a ahorrar dinero al permitirles prepararse para el reemplazo de activos energéticos costosos y esenciales y evitar tareas de mantenimiento imprevistas.
  • Compromiso con el cliente- El sector energético está comenzando a adoptar la inteligencia artificial y el aprendizaje automático para la interacción con el cliente. Las empresas de energía pueden brindar a sus clientes información adaptada a sus necesidades mediante el uso de inteligencia artificial y aprendizaje automático. Esto implica analizar los datos de los clientes para comprender su uso de energía y luego brindarles información sobre cómo cambiar sus hábitos de uso para consumir menos energía.
  • Comercio de energía- Como la energía debe entregarse de inmediato, el comercio de energía difiere del de otros productos básicos. Los comerciantes de energía enfrentan un desafío debido a esto, pero también existe una posibilidad porque los mercados de energía se están volviendo más líquidos. Al pronosticar la demanda de energía y brindar a los comerciantes acceso a datos de precios en tiempo real, se pueden utilizar la inteligencia artificial y el aprendizaje automático para mejorar la eficiencia del mercado de comercio de energía. Los comerciantes de energía pueden luego utilizar esta información para tomar decisiones más informadas sobre cuándo comprar y vender energía. Los acuerdos de compra de energía (PPA), un contrato financiero entre compradores y vendedores de energía, se han desarrollado utilizando tecnología blockchain. Estos contratos son más efectivos gracias a la tecnología blockchain porque acelera las transacciones, su uso cuesta menos que las plataformas PPA convencionales y se basa en una plataforma muy segura.

Se espera que el mercado de conectores de energía renovable crezca a una tasa del 6,10% durante el período previsto de 2021 a 2028. El informe de Data Bridge Market Research sobre el mercado de conectores de energía renovable proporciona análisis e información sobre factores como la creciente adopción de fuentes de energía renovables. Los elevados costes de instalación y el agotamiento de los recursos naturales limitan el mercado de los conectores de energía renovable durante el período de previsión mencionado. Los crecientes niveles de calentamiento global y el rápido aumento de la población se convertirán en el mayor desafío en el crecimiento del mercado de conectores de energía renovable en el período de pronóstico mencionado anteriormente. El mercado de conectores de energía renovable está segmentado según los tipos, la fuente de energía, la aplicación y el usuario final. Asia-Pacífico dominará el mercado de conectores de energía renovable debido a las crecientes reformas energéticas en la región junto con el creciente número de canales de distribución, mientras que América del Norte esperará crecer en el período previsto de 2021-2028 debido a la prevalencia de políticas favorables y crecientes estándares de cartera de energías renovables.

Para saber más sobre el estudio, visite: https://www.databridgemarketresearch.com/es/reports/global-renewable-energy-connector-market

¿Cómo acelerará la IA el ritmo de la transición energética?

Como se afirma inequívocamente en la nueva evaluación del IPCC, se necesitan urgentemente más medidas para prevenir impactos climáticos catastróficos a largo plazo. Los combustibles fósiles todavía proporcionan más del 80% de la energía mundial, por lo que cualquier iniciativa debe centrarse en el sector energético. Afortunadamente, el sistema energético ya está cambiando; La producción de energía renovable se está expandiendo rápidamente debido a la disminución de los costos y al creciente interés de los inversores. Sin embargo, no queda mucho tiempo y la escala y el coste de descarbonizar todo el sistema energético siguen siendo enormes. Hasta este momento, la mayoría de los esfuerzos de transición de la industria energética se han concentrado en el hardware: nueva infraestructura baja en carbono que reemplazará a los sistemas tradicionales con uso intensivo de carbono. Otro instrumento crucial para el cambio, las tecnologías digitales de próxima generación, en particular la inteligencia artificial, ha recibido muy poca atención y financiación (IA). Estas potentes tecnologías tienen el potencial de acelerar la transición energética al adoptarse a escalas más rápidas que las nuevas soluciones de hardware. Tres tendencias principales impulsan el potencial de la IA para acelerar la transición energética:

  • Los procesos históricos de descarbonización apenas están comenzando en industrias de uso intensivo de energía, incluidas la energía, el transporte, la industria pesada y los edificios, gracias a la creciente presión pública para que se reduzcan rápidamente las emisiones de CO2. Estas transformaciones tienen un alcance enorme. Según BloombergNEF, se necesitarán entre 92 y 173 billones de dólares en inversiones en infraestructura para lograr emisiones netas cero para el año 2050, solo en el sector energético. Por lo tanto, incluso aumentos modestos en energía limpia y flexibilidad, eficiencia o capacidad industrial baja en carbono pueden generar billones de dólares en valor y ahorro.
  • El sector energético está evolucionando hacia el pilar principal del suministro energético mundial a medida que la electricidad sustenta más industrias y aplicaciones. Para garantizar que las redes eléctricas puedan gestionarse de forma segura y confiable, aumentar el despliegue de energía renovable significará que se suministrará más energía a partir de fuentes esporádicas (como la solar y la eólica), lo que aumentará la necesidad de previsión, coordinación y consumo flexible.
  • La rápida expansión de la generación distribuida de energía, el almacenamiento distribuido y la mejora de las capacidades de respuesta a la demanda están impulsadas por el cambio hacia sistemas energéticos bajos en carbono. Estas capacidades deben coordinarse e integrarse a través de redes eléctricas transaccionales más interconectadas.

El sistema energético y los sectores de uso intensivo de energía enfrentan enormes obstáculos estratégicos y operativos para navegar estas tendencias. La IA puede ayudar a las partes interesadas del sistema energético a identificar patrones y conocimientos en los datos, aprender de la experiencia y mejorar el rendimiento del sistema a lo largo del tiempo, y predecir y modelar resultados potenciales de situaciones complejas y multivariadas mediante el establecimiento de una capa de coordinación inteligente en toda la generación, transmisión y uso. de energía. Múltiples áreas de la transición energética ya están viendo beneficios tangibles de la IA, incluida la previsión de energía renovable, las operaciones y optimización de la red, los activos de energía distribuida y la coordinación de la gestión del lado de la demanda, y la innovación y el descubrimiento de materiales. Aunque el uso de la IA en el sector energético hasta ahora se ha mostrado prometedor, no ha habido mucha innovación ni aceptación generalizada. Esto ofrece una fantástica oportunidad de acelerar la transición hacia el futuro sistema energético que necesitamos: uno que sea libre de emisiones, extremadamente eficiente y vinculado. La capacidad de la IA para acelerar la transición energética global es mucho mayor de lo que se pensaba anteriormente, pero este potencial sólo puede realizarse si se incrementa la innovación, la adopción y la colaboración de la IA en toda la industria.

¿Por qué la IA es clave para la resiliencia de las redes de energía renovable?

  • Para gestionar las redes descentralizadas durante el cambio global a la energía renovable, se necesitará tecnología de inteligencia artificial (IA)
  • La IA puede optimizar el uso y el almacenamiento de energía para reducir costos y equilibrar las necesidades de suministro y demanda de electricidad en tiempo real.
  • Se requerirá gobernanza tecnológica para asegurar fuentes eléctricas resilientes, promover la innovación y democratizar el acceso.

Para resolver los desafíos actuales utilizando tecnología del pasado, se ha pedido que el gobierno invierta en infraestructura de red para modernizar largas líneas de transmisión desde una fuente de suministro de energía centralizada. Ya existe un sustituto superior y más progresivo: la Inteligencia Artificial (IA) que utiliza fuentes de energía renovables distribuidas. Por tanto, la IA es clave para la promoción de las energías renovables de dos maneras:

AI's Assistance in Promoting Renewable Energy

Fig.3: Asistencia de la IA en la promoción de energías renovables

  • Mayor complejidad en energías renovables- Se generará más energía a partir de fuentes renovables distribuidas a medida que el mundo se electrifique más. Consideremos las baterías, los paneles solares privados, los parques eólicos y las microrredes. Incluso si son ventajosos para la sostenibilidad, complicarán la infraestructura energética en todo el mundo. Será necesario un delicado acto de equilibrio para igualar la oferta y la demanda sin poner la red de rodillas en los próximos 10 a 15 años como resultado de la creciente adopción de vehículos eléctricos, la electrificación de los sistemas de calefacción y la proliferación de recursos energéticos distribuidos. (DER) como turbinas eólicas y paneles solares. Utilice Australia como ejemplo. Para 2030 y 2050, se espera que el 30% y el 60% de las estructuras residenciales, comerciales e industriales del país utilicen energía solar. Situaciones similares están ocurriendo en todo el mundo a medida que más consumidores comerciales, gubernamentales y residenciales producen su propia energía utilizando paneles solares, la almacenan en baterías para usarla en vehículos eléctricos o la devuelven a la red. Nuestras proyecciones muestran que para 2030 habrá 89 millones de dispositivos de almacenamiento de energía en la red europea, frente a la estimación actual de 36 millones (ver imagen a continuación). Las redes eléctricas pueden volverse caóticas si millones de dispositivos individuales publican y descargan electricidad. En otras palabras, las empresas de servicios públicos necesitarán cambiar sus modelos de negocios, ya que la dependencia de una sola empresa para producir y transmitir electricidad está disminuyendo. Pronto dejarán de ser la única fuente de energía; en cambio, deberán mantener la red equilibrada transfiriendo electrones de diversas fuentes y sistemas de almacenamiento para suministrar energía donde se necesita segundo a segundo de manera eficiente.
  • IA para equilibrar millones de redes Las fuentes de energía descentralizadas pueden transferir cualquier electricidad adicional que generen a la red mediante software de inteligencia artificial, y las empresas de servicios públicos pueden enviar esa electricidad a donde sea necesaria. De manera similar al almacenamiento de energía, que puede conservar energía adicional cuando la demanda es baja en hogares, oficinas, automóviles y otras estructuras, la IA puede usar esa energía cuando la generación es insuficiente o imposible. Hay muchas piezas móviles en ese sistema; por lo tanto, se necesitan coordinación, previsión y optimización para mantener la estabilidad de la red. Una utilidad es como un director que mantiene la orquesta en el tiempo mientras la IA compone la sinfonía en tiempo real si imagina a los DER como músicos individuales. Como resultado, un sistema basado en IA puede transformar el juego. Una red que es más resiliente y flexible cuando ocurren eventos imprevistos es el resultado de cambiar de un sistema con mucha infraestructura a uno centrado en la IA. La previsión y el control ahora son posibles en segundos en lugar de días.

Con respecto a los recursos energéticos descentralizados, las empresas de servicios públicos, los tomadores de decisiones y las agencias reguladoras deben comenzar a considerar sus respectivos roles. La gestión y coordinación del mosaico de productores de energía distribuida será esencial. Las empresas de servicios públicos pueden tomar la iniciativa en esta situación, ya que tienen que lidiar con un número cada vez menor de clientes que compran electricidad a medida que más casas y empresas comienzan a producir su propia energía gracias a los paneles solares en los tejados y tecnologías similares. No hay tiempo que perder porque el cambio climático seguirá trayendo condiciones climáticas más extremas al mundo. Es probable que la situación económica actual y las prolongadas discusiones políticas como la que se prevé en Estados Unidos arrastren las inversiones necesarias. Lo mejor es no invertir en redes centralizadas con su red de largos cables y transformadores; más bien, los gobiernos deberían hacer planes para una red donde las comunidades y los edificios produzcan su propia electricidad, que luego se gestiona en tiempo real mediante software. Los responsables políticos deberían considerar la financiación pública de la producción de energía renovable, así como incentivos para una generación de energía más dispersa en la industria privada y en las viviendas. Y para garantizar la interoperabilidad, la transparencia y el acceso justo en todo el entorno energético, necesitamos una gobernanza del software de IA aprobada a nivel mundial.

Conclusión

Un enfoque proactivo y cooperativo para la gobernanza de la tecnología relacionada con la IA sería ventajoso para el sector energético. Los próximos años serán importantes para promover la innovación en esta área y democratizar el acceso a tecnologías innovadoras bajas en carbono en todo el sistema energético. Si no se aceptan previamente, la industria debe implementar estándares de datos comunes como condición para esto y la digitalización en general. Una mayor cooperación entre los actores de la industria energética puede tomar la forma de proyectos conjuntos de I+D, compartiendo técnicas de mejores prácticas para poner en práctica conceptos de IA y presentando ejemplos de uso. La colaboración también podría promover la confianza entre los creadores de tecnología de IA, los consumidores, los reguladores y otras partes interesadas que interactúan con los sistemas de IA. Los reguladores y operadores de redes deben considerar el potencial de una variedad de tecnologías digitales (como el aprendizaje automático, la computación cuántica, la tecnología blockchain, entre otras) para mejorar la forma en que se operan las redes a medida que su gestión y operación se vuelven más complejas, particularmente en el nivel de la red de distribución. La necesidad de repensar la gestión de la red y la oportunidad de desarrollar diseños nuevos y más descentralizados para las decisiones de acceso, operación y gestión de la red surgen a medida que el sistema eléctrico se descarboniza y descentraliza. El método tradicional de gestión manual de comando y control (con un operador central del sistema) debe ser reemplazado por una toma de decisiones descentralizada basada en tecnología, que permita una toma de decisiones más rápida y agregue automáticamente activos distribuidos más pequeños a la red (usando, por ejemplo, blockchain). , identidad digital y contratos inteligentes). Los gobiernos podrían ordenar u ofrecer incentivos a organismos públicos e industriales para que administren y financien bases de datos centrales de datos industriales como parte de esta difusión equitativa de datos. Estos conjuntos de datos permitirían el entrenamiento de algoritmos de IA y posiblemente podrían disminuir los sesgos en los algoritmos que frecuentemente son provocados por datos escasos o de mala calidad.

El aumento de la demanda de sistemas duraderos y eficientes desde el punto de vista energético ha llevado al aumento de la demanda de sistemas de recolección de energía. Data Bridge Market Research analiza que el mercado de sistemas de recolección de energía exhibirá una CAGR del 10,04% para el período previsto de 2021-2028. Esto significa que el valor de mercado actual aumentará a 1.042,5 millones de dólares en 2028. Un sistema de recolección de energía es la tecnología que convierte la energía del medio ambiente en energía eléctrica utilizable. Este sistema extrae pequeñas cantidades de energía del medio ambiente que de otro modo se habrían perdido en forma de calor, luz, sonido o vibración. América del Norte domina el mercado debido a la mayor adopción y aplicación de sistemas de recolección de energía en edificios y electrodomésticos. El crecimiento en el sector industrial y automotriz también ha impulsado el crecimiento del mercado en todos los países de esta región. Estados Unidos es el mayor contribuyente aquí.

Para saber más sobre el estudio, visite: https://www.databridgemarketresearch.com/es/reports/global-energy-harvesting-system-market


testimonios de clientes