ملخص
يصف مصطلح "الذكاء الاصطناعي التوليدي في الروبوتات" استخدام أساليب الذكاء الاصطناعي التوليدي في تصميم الأنظمة الروبوتية وتحسينها والتحكم فيها. تتضمن أمثلة هذه الأساليب شبكات الخصومة التوليدية (GANs)، وأجهزة التشفير التلقائي المتغيرة (VAEs)، ونماذج التعلم العميق الأخرى. توفر هذه الأساليب للروبوتات القدرة على التعلم من البيانات، والتوصل إلى أفكار جديدة، والتكيف مع البيئة المحيطة المتغيرة، مما يزيد من قدرتها على التكيف وكفاءتها.
تمتلك الروبوتات والذكاء الاصطناعي التوليدي معًا إمكانات هائلة لتغيير ما يمكن للروبوتات إنجازه. ويمكنه تحسين استقلالية الروبوت، وتقليد الإبداع البشري، وتمكين التعلم التكيفي وغير الخاضع للرقابة من خلال دمج تقنيات الذكاء الاصطناعي التوليدية مع الروبوتات. إن موضوع الذكاء الاصطناعي التوليدي في مجال الروبوتات يتغير دائمًا بسبب الدراسة المستمرة والتطورات في التكنولوجيا. هناك العديد من الاستخدامات الممكنة، كما هو الحال في الرعاية الصحية، والتصنيع، والخبز، والمؤسسات المالية. وسيكون التأثير محسوسًا في رضا العملاء والفعالية التشغيلية. ومن خلال العمل معًا، يمكن للحكومة والمؤسسات الأكاديمية والشركات ضمان مواكبة المعايير الأخلاقية والأطر القانونية لتطور الذكاء الاصطناعي التوليدي، مما يؤدي إلى تطبيقه المسؤول والمفيد.
الشكل 1: روبوتات الذكاء الاصطناعي التوليدية
أنواع أساليب الذكاء الاصطناعي التوليدية المستخدمة في الروبوتات
- شبكات الخصومة التوليدية (GANs): يتم استخدام أسلوب التدريب التنافسي لتدريب الشبكات العصبية المولدة والتمييزية جنبًا إلى جنب. بينما يتعلم القائم بالتمييز التمييز بين العينات الأصلية والمنتجة، يتعلم المولد إنتاج عينات بيانات واقعية. يمكن استخدام شبكات GAN في الروبوتات لإنتاج بيانات استشعار واقعية واستراتيجيات تحكم ومكونات النظام الأخرى
- أجهزة التشفير التلقائي المتغيرة (VAEs): تعد VAEs فئة من النماذج التوليدية التي يمكن تدريبها على تشفير البيانات وفك تشفيرها في مساحات بيانات مختلفة، ولكل منها بُعد أقل. تتمتع VAEs بالقدرة على تحسين التعلم والتحسين في مجال الروبوتات من خلال تعلم التمثيلات المدمجة لبيانات الاستشعار واستراتيجيات التحكم والميزات الأخرى للأنظمة الروبوتية
- التعلم المعزز (RL): إنه نوع من التعلم الآلي الذي يكتسب فيه الوكيل مهارات اتخاذ القرار من خلال التفاعل مع محيطه وردود الفعل في شكل مكافآت أو عقوبات. لتعلم سياسات التحكم وتخطيط المسار ومهام صنع القرار الأخرى في الروبوتات، يمكن دمج مناهج الذكاء الاصطناعي التوليدية مع التعلم المعزز
- الأساليب التطورية (EAs): يعتبر الانتقاء الطبيعي مصدر إلهام لهذه الفئة من طرق التحسين. من خلال تحسين الحلول المحتملة بشكل متكرر على مدى عدة أجيال، يمكن استخدام الخوارزميات التطورية (EAs) في الروبوتات لتحسين تصميم المكونات الروبوتية، واستراتيجيات التحكم، والجوانب الأخرى للأنظمة الروبوتية.
الشكل 2: فوائد الروبوتات التوليدية للذكاء الاصطناعي
التحديات التي تمت مواجهتها أثناء اعتماد روبوتات الذكاء الاصطناعي التوليدية
تكثر الاعتبارات والعقبات عند دمج الذكاء الاصطناعي التوليدي مع الروبوتات. ولضمان التطبيق المناسب والفعال للذكاء الاصطناعي التوليدي في مجال الروبوتات، يجب النظر بعناية في قضايا النشر والقيود التكنولوجية والاعتبارات الأخلاقية.
- صعوبات التكامل والنشر: قد يكون من الصعب دمج الذكاء الاصطناعي التوليدي في أنظمة الروبوتات الحالية. يجب أن يعمل مع أنواع مختلفة من الأجهزة والبرامج، ويجب أن يتكامل بسلاسة مع بنية النظام بأكملها. بالإضافة إلى ذلك، تنشأ مشكلات تتعلق بقدرة المعالجة واستهلاك الطاقة واتخاذ القرار في الوقت الفعلي عند تنفيذ نماذج الذكاء الاصطناعي التوليدية على الروبوتات في الإعدادات العملية. علاوة على ذلك، فإن دمج الذكاء الاصطناعي التوليدي في الروبوتات يطرح تساؤلات بشأن التواصل والتعاون بين الإنسان والروبوت. يتطلب الأمر تخطيطًا وتفكيرًا كبيرًا للتأكد من أن الروبوتات يمكنها التفاعل والعمل مع الأشخاص بطريقة آمنة ويمكن الاعتماد عليها
- عدم اليقين والقيود الفنية: على الرغم من أن الذكاء الاصطناعي التوليدي يتمتع بالكثير من الإمكانات، إلا أنه لا تزال هناك بعض الأسئلة والقيود الفنية التي لم تتم الإجابة عليها. إن القدرة على إنتاج عمل أصلي ومبتكر حقًا هي إحدى هذه الصعوبات. في حين أن نماذج الذكاء الاصطناعي التوليدية يمكن أن توفر نتائج رائعة، فإنها تعتمد في كثير من الأحيان على أنماط وحالات من البيانات الموجودة مسبقًا. لا يزال السعي وراء الإبداع والابتكار الحقيقي يمثل مشكلة بحثية. علاوة على ذلك، هناك شكوك حول موثوقية ومرونة نماذج الذكاء الاصطناعي التوليدية. أحد المخاوف المهمة هو الهجمات العدائية، حيث يتحكم المنفذون الخبيثون في أنظمة الذكاء الاصطناعي. هناك حاجة إلى البحث والتطوير المستمر لضمان أمن وسلامة الذكاء الاصطناعي التوليدي في الروبوتات، وهي ميزة بالغة الأهمية
- قابلية التوسع: قد يكون من الصعب توسيع نطاق نماذج الذكاء الاصطناعي التوليدية لتشمل الأنظمة الروبوتية واسعة النطاق أو التطبيقات في الوقت الفعلي بسبب تكاليفها الحاسوبية المرتفعة
- متطلبات البيانات: بالنسبة لبعض التطبيقات الآلية، قد يمثل الحصول على الكميات الهائلة من البيانات اللازمة لتدريب خوارزميات الذكاء الاصطناعي بشكل صحيح تحديًا
- الآثار المترتبة على الأخلاق: هناك مخاوف أخلاقية كبيرة بشأن استخدام الذكاء الاصطناعي التوليدي في مجال الروبوتات. ومن المهم بشكل متزايد التأكد من أن القرارات التي تتخذها الروبوتات المستقلة والمتطورة على نحو متزايد تلتزم بالمعايير والقيم الأخلاقية. من المهم التعامل بشكل صحيح مع قضايا مثل المساءلة والخصوصية والتحيز لتجنب أي تداعيات غير مقصودة أو ضرر محتمل. ومن خلال العمل معًا، يجب على المطورين والأكاديميين والسياسيين إنشاء معايير أخلاقية لإنشاء وتطبيق الذكاء الاصطناعي التوليدي في مجال الروبوتات
يمكن التغلب على هذه التحديات ويمكن حتى إنشاء تطبيقات روبوتية أخلاقية وهامة للذكاء الاصطناعي التوليدي من خلال المشاركة الفعالة في البحث والعمل مع مختلف الشركات المرتبطة من خلال اتخاذ قرارات استراتيجية مختلفة مثل الشراكة والتعاون والاندماج والاستحواذ.
التطبيقات الرئيسية للذكاء الاصطناعي التوليدي في مجال الروبوتات
- تصميم الروبوتات: ومن خلال إنتاج تكوينات مبتكرة توازن بين التكلفة والأداء، يمكن تطبيق أساليب الذكاء الاصطناعي التوليدي لتحسين تصميم الأجزاء الروبوتية، بما في ذلك المفاصل والمحركات والأطراف. وقد تنتج عن ذلك أنظمة روبوتية قوية وأكثر كفاءة
- التخطيط والتحكم في حركة الروبوت: تمتد التداعيات الكبيرة للذكاء الاصطناعي التوليدي أيضًا إلى تخطيط حركة الروبوت والتحكم فيها. يمكن للروبوتات إنشاء خطط حركة مُحسّنة لتحقيق الكفاءة والسلامة لأنها تستطيع التعلم من مجموعات البيانات الكبيرة. يمكن للروبوتات إنشاء مجموعة متنوعة من مسارات الحركة الواقعية من خلال استخدام الخوارزميات التوليدية، والتي تساعدها على التنقل بدقة في الإعدادات الصعبة. وهذا مفيد بشكل خاص للتطبيقات، مثل الخدمات اللوجستية وأتمتة المستودعات، حيث يجب على الروبوتات المناورة عبر المناطق المزدحمة والتواصل مع الأشخاص والأشياء الأخرى.
- التعاون والتفاعل بين الإنسان والروبوت: ومن خلال استخدام الذكاء الاصطناعي التوليدي، يمكن تحسين التفاعل والتعاون بين الإنسان والروبوت، مما يؤدي إلى ظهور روبوتات أكثر ذكاءً وقادرة على التنقل بين البشر. ويمكن تدريب الروبوتات على إنتاج سلوكيات حقيقية تشبه سلوكيات الإنسان من خلال استخدام أساليب الذكاء الاصطناعي التوليدية، والتي ستمكن من التواصل والتعاون بسلاسة مع الناس. على سبيل المثال، يمكن إنشاء روبوتات الدردشة والمساعدين الافتراضيين الذين يمكنهم التحدث بشكل طبيعي مع المستخدمين وتقديم مساعدة ودعم مخصصين باستخدام الذكاء الاصطناعي التوليدي.
وبصرف النظر عن هذه الاستخدامات، يحمل الذكاء الاصطناعي التوليدي القدرة على إحداث ثورة في عدد من القطاعات الأخرى، بما في ذلك الصناعة والرعاية الصحية والتمويل والتعليم. قد تكون الروبوتات الآن قادرة على تنفيذ المهام الصعبة، والتكيف مع البيئة المحيطة المتغيرة، والتفاعل مع الناس بشكل أكثر فائدة بسبب التطورات والاختراقات في مجال الذكاء الاصطناعي التوليدي.
- الاختبار والمحاكاة: قبل نشر تصميماتهم، يمكن للمهندسين اختبار وتحسين تلك التي تستخدم محاكاة واقعية للأنظمة الروبوتية وإعداداتها، والتي يتم إنتاجها باستخدام نماذج الذكاء الاصطناعي التوليدية. يمكن أن يؤدي ذلك إلى تقليل وقت وتكلفة التطوير مع تعزيز اعتمادية الأنظمة الروبوتية أيضًا. قد تجد الخوارزميات التوليدية طريقها إلى الأنظمة التي توجه حركات الروبوت. يعد Dobb-E، وهو روبوت يتعلم المهام عبر لقطات فيديو على جهاز iPhone، أحد الأمثلة المبكرة
- الاستشعار والإدراك الآلي: تعتمد الروبوتات بشكل كبير على الذكاء الاصطناعي التوليدي لتحسين قدراتها على الإدراك والاستشعار. من خلال استخدام النمذجة التوليدية وشبكات الخصومة التوليدية (GANs)، يمكن تدريب الروبوتات على إنتاج بيانات اصطناعية تحاكي مدخلات أجهزة الاستشعار في العالم الحقيقي. يمكن للروبوتات أن تكتسب فهمًا أفضل لما يحيط بها باستخدام هذه البيانات الاصطناعية لتدريب وتعزيز خوارزميات الإدراك. على سبيل المثال، يمكن أن يساعد الذكاء الاصطناعي التوليدي في تحسين دقة أنظمة الكشف عن الأشياء والتعرف عليها في السيارات ذاتية القيادة، مما يعزز موثوقيتها وسلامتها.
يشهد سوق chatbot العالمي نموًا كبيرًا في السنوات الأخيرة بسبب الحاجة المتزايدة إلى chatbot القائم على الذكاء الاصطناعي لتوفير تجربة محسنة للعملاء. علاوة على ذلك، فإن الاستخدام المتزايد للذكاء الاصطناعي التوليدي في الروبوتات، والمبادرات المتزايدة لبناء روبوتات ذاتية التعلم لتجربة محادثة شبيهة بالإنسان، هي عوامل أخرى تميل إلى تعزيز النمو في السنوات القادمة. وفقًا لتحليل Data Bridge Market Research، من المتوقع أن ينمو سوق chatbot العالمي بمعدل نمو سنوي مركب (CAGR) يبلغ 22.10٪ في الفترة من 2021 إلى 2029.
لمعرفة المزيد عن الدراسة، قم بزيارة:https://www.databridgemarketresearch.com/ar/reports/global-chatbots-market
فيما يلي الأمثلة المتعلقة بالذكاء الاصطناعي التوليدي في مجال الروبوتات:
- في فبراير 2024، تم الكشف عن المرحلة التالية من القوى العاملة الروبوتية المتوسعة في أمازون. وقالت الشركة إن نظام سيكيوا الجديد، الذي يربط الروبوتات من أجزاء مختلفة من المستودع لتشكيل فريق واحد مستقل، قد عزز الكفاءة التشغيلية بشكل كبير. تتمتع الروبوتات والأتمتة بالكثير من الإمكانات بفضل الذكاء الاصطناعي التوليدي. ونتيجة لذلك، يحاول عملاق التكنولوجيا حاليًا جمع الأموال لفئة أكثر تقدمًا من الروبوتات. سيعمل صندوق الابتكار الصناعي الخاص بالشركة على تسريع الاستثمارات في الشركات التي تركز على الروبوتات والذكاء الاصطناعي
- في نوفمبر 2023، كشفت شركة DeepMind من Google النقاب عن Open X-Embodiment، وهي قاعدة بيانات لوظائف الروبوتات تم تطويرها بالشراكة مع 33 معهدًا أكاديميًا. وقارن الباحثون الطريقة بـ ImageNet، قاعدة البيانات التاريخية التي تم إنشاؤها في عام 2009 وتضم حاليًا أكثر من 14 مليون صورة. تم جمع أكثر من 500 موهبة و150.000 نشاط من 22 تجسيدًا للروبوت لإنشاء Open X-Embodiment. عند مقارنتها بالتقنيات الداخلية، أبلغت DeepMind عن معدل نجاح بنسبة 50% عند استخدام البيانات لتدريب نموذج RT-1-X، والذي استخدمته بعد ذلك لتدريب الروبوتات في مختبرات أخرى. مما لا شك فيه أن الذكاء الاصطناعي (خاصة النوع التوليدي) والمحاكاة يلعبان دورًا رئيسيًا في هذا
- في أكتوبر 2023، استخدم الباحثون في معهد ماساتشوستس للتكنولوجيا نموذج انتشار، وهو نوع من الذكاء الاصطناعي التوليدي، للتعامل بشكل أكثر فعالية مع مشكلات التعبئة، بما في ذلك تكديس الأمتعة، والاصطدامات بين مصد السيارة والذراع الآلي، ووضع أشياء أثقل فوق المنتجات الأخف وزنًا. يتم استخدام مجموعة من نماذج التعلم الآلي، كل منها مدرب لتمثيل نوع معين من القيود، في منهجيتها. ومن خلال الجمع بين هذه النماذج، يتم إنتاج حلول عالمية تأخذ في الاعتبار جميع القيود في وقت واحد لمشكلة التعبئة
أهم الاتجاهات في روبوتات الذكاء الاصطناعي التوليدية
الشكل 3: أحدث الاتجاهات في روبوتات الذكاء الاصطناعي التوليدية
- الروبوتات المستقلة: تُعرف الروبوتات القادرة على تنفيذ المهام دون إشراف بشري مستمر بالروبوتات المستقلة. تتنقل هذه الروبوتات وتتخذ القرارات بنفسها باستخدام أجهزة الاستشعار والخوارزميات. لقد أصبحت ذات أهمية متزايدة في مجموعة متنوعة من الصناعات، بما في ذلك التصنيع والخدمات اللوجستية، لأنها تعمل على تحسين الكفاءة والسلامة. الروبوتات المستقلة قادرة على التعامل مع الأنشطة الخطيرة أو المتكررة حتى يتمكن الأشخاص من التركيز على المسؤوليات الأكثر تعقيدًا. المركبات الآلية والطائرات بدون طيار ليست سوى مثالين لكيفية تطور الروبوتات التي تعمل بالذكاء الاصطناعي. تشمل التطورات الإضافية نماذج التدريب على التعلم الآلي، وإنشاء المحتوى، وتوليد الصور، واكتشاف الطب، وأدوات إنشاء الموسيقى، وتوليد الأكواد، وتطبيقات الذكاء الاصطناعي متعددة الوسائط، وشبكات الإعلان التوليدية والمزيد.
- التوأم الرقمي: هناك اتجاه ذو قيمة عالية في مجال الروبوتات والذكاء الاصطناعي التوليدي وهو تكنولوجيا التوأم الرقمي. تسمى النسخة المتماثلة الافتراضية أو المحاكاة لكائن أو نظام حقيقي بالتوأم الرقمي. يشير هذا إلى عملية تطوير نظير رقمي في مجال الروبوتات يحاكي سمات وتفاعلات وسلوك الروبوت الحقيقي. يتطلب تطوير التوائم الرقمية المتطورة استخدام الذكاء الاصطناعي التوليدي، الذي يحاكي سيناريوهات العالم الحقيقي ديناميكيًا ويمكنه التكيف مع البيئات المتغيرة. تتيح هذه التقنية للمهندسين والمطورين تحسين الأنظمة الروبوتية واستكشاف أخطائها وإصلاحها رقميًا قبل تنفيذها، مما يؤدي إلى عمليات تصميم أكثر كفاءة، وانخفاض تكاليف التطوير، وتحسين الأداء العام للأجهزة الروبوتية. يُحدث الجمع بين الذكاء الاصطناعي التوليدي والتوائم الرقمية ثورة في صناعة الروبوتات من خلال تحسين الدقة والقدرة على التكيف والاعتمادية في التطبيقات المتنوعة
- التطوير في البرمجة اللغوية العصبية: تتضمن تطورات البرمجة اللغوية العصبية تعزيز فهم الآلات والاستجابة للغة البشرية. وتؤثر هذه التقنية على العديد من التطبيقات، مثل روبوتات الدردشة والمساعدين الافتراضيين وأدوات ترجمة اللغة من خلال تمكين التواصل السلس بين البشر والآلات. علاوة على ذلك، تعمل معالجة اللغة الطبيعية المحسنة (NLP) على تمكين الآلات من فهم السياق والمشاعر والفروق الدقيقة في اللغة، وبالتالي تعزيز التعاون بين الإنسان والآلة. علاوة على ذلك، لا يعمل هذا الاتجاه على تحسين تجربة المستخدم فحسب، بل يعمل أيضًا على تعزيز إنشاء أنظمة ذكاء اصطناعي متطورة يمكنها تفسير وإنشاء نص يشبه الإنسان، مما يجعلنا أقرب إلى التواصل الطبيعي بين الإنسان والآلة. علاوة على ذلك، تعمل التطورات في معالجة اللغة الطبيعية (NLP) على تحسين مدى فهم أجهزة الكمبيوتر للغة البشرية أو الذكاء البشري والتفاعل معها، مما يؤدي إلى أنظمة أكثر سهولة في الاستخدام مدعومة بالذكاء الاصطناعي من خلال إنشاء صور واقعية.
- الكلام المركب: هناك اتجاه شائع في روبوتات الذكاء الاصطناعي التوليدية وهو تركيب الكلام، والذي يهدف إلى توفير أصوات واقعية وطبيعية للروبوتات. تتيح مثل هذه التكنولوجيا للآلات التفاعل مع الأشخاص بفعالية، وتحسين تجربة المستخدم وتمكين التفاعل بين الإنسان والروبوت. تتيح تقنيات المعالجة المتقدمة للغة الطبيعية والتعلم العميق للروبوتات فهم اللغة المنطوقة وإنتاج استجابات معبرة وغنية بالتنغيم. ونتيجة لذلك، تصبح التفاعلات أكثر إثارة للاهتمام وترابطا. يشتمل هذا الاتجاه على مجموعة واسعة من التطبيقات، بدءًا من الروبوتات المخصصة إلى المرافقين المسنين، حيث يعد التواصل الواضح والمعبّر أمرًا ضروريًا لبناء العلاقة والثقة.
- الجيل ثلاثي الأبعاد (3D): يتم إحراز تقدم كبير في مجال الذكاء الاصطناعي في مجال التوليد ثلاثي الأبعاد عبر الروبوتات. ويستلزم ذلك توظيف الذكاء الاصطناعي لإنشاء نماذج أو بيئات افتراضية ثلاثية الأبعاد. يمكن تطبيق هذه النماذج على عدد من المهام، بما في ذلك تصميم الهياكل المعقدة، وتحسين تجارب الواقع الافتراضي، ونمذجة سيناريوهات واقعية لتدريب الأنظمة الروبوتية. وقد استفادت المجالات المتقدمة مثل التصميم بمساعدة الكمبيوتر، والمحاكاة، والنماذج الأولية الافتراضية من تطوير الخوارزميات التوليدية، التي تسهل إنشاء مواد ثلاثية الأبعاد واقعية ومعقدة. تساعد هذه التقنية في تطوير واختبار الأنظمة الروبوتية في مساحة رقمية أكثر واقعية وغامرة من خلال تسهيل فهم وتصور أفضل للبيانات المكانية المعقدة.
شهد سوق الروبوتات المستقلة عالميًا نموًا كبيرًا بسبب الطلب المتزايد على أتمتة المستودعات والتسليم السريع في الميل الأخير. وفقًا لتحليل Data Bridge Market Research، من المتوقع أن ينمو سوق الروبوتات العالمية المستقلة بمعدل نمو سنوي مركب (CAGR) يبلغ 19.70٪ في الفترة من 2022 إلى 2030.
لمعرفة المزيد عن الدراسة، قم بزيارة:https://www.databridgemarketresearch.com/ar/reports/global-autonomous-robot-market
الآفاق القادمة لروبوتات الذكاء الاصطناعي التوليدية
هناك فرص مثيرة تنتظر الذكاء الاصطناعي التوليدي في مجال الروبوتات. التطورات والاختراقات في هذا المجال تفتح الباب أمام التطبيقات الثورية في مجموعة من الصناعات.
- التأثيرات المحتملة على القطاعات المختلفة من المتوقع أن يكون للذكاء الاصطناعي التوليدي في الروبوتات تأثير كبير على العديد من الصناعات. على سبيل المثال، يمكن أن يساعد الذكاء الاصطناعي التوليدي في مجال الرعاية الصحية في التصوير الطبي من خلال إنشاء صور اصطناعية يمكن أن تساعد في التشخيص وتخطيط العلاج. من خلال إنشاء حلول جديدة ومبتكرة، يمكن للذكاء الاصطناعي التوليدي تحسين العمليات والتصميم في الصناعة التحويلية. يمكن استخدام الذكاء الاصطناعي التوليدي في مجال الترفيه لإنتاج تجارب تفاعلية وشخصية.
- الابتكارات والتطورات التكنولوجية: إن موضوع الذكاء الاصطناعي التوليدي في مجال الروبوتات يتغير دائمًا بسبب الدراسة المستمرة والتطورات في التكنولوجيا. من أجل تحسين قدرات نماذج الذكاء الاصطناعي التوليدية، يدرس الباحثون أساليب وأساليب جديدة. يتم تضمين التطورات في التعلم العميق التوليدي، وشبكات الخصومة التوليدية (GANs)، والنمذجة التوليدية في هذا.
من المحتمل أن يتم العمل على نماذج ذكاء اصطناعي أكثر تعقيدًا وواقعية نتيجة لهذه التطورات. ونتيجة لذلك، ستكون الروبوتات قادرة على إنتاج أعمال أكثر تعقيدًا وإبداعًا، مما سيزيد من كفاءتها وتعدد استخداماتها. علاوة على ذلك، ستساعد الخوارزميات التوليدية الأنظمة الروبوتية على أن تصبح أكثر مهارة في اتخاذ القرارات وحل المشكلات.
- فرص التعاون بين الشركات والهيئات الحكومية المختلفة: ومع تطور الذكاء الاصطناعي في مجال الروبوتات، سيكون العمل الجماعي ضروريًا لتعزيز الإبداع وتحقيق الإمكانات الكاملة لهذه التكنولوجيا. قد تتولى المنظمات مهام صعبة وتدفع حدود الذكاء الاصطناعي التوليدي من خلال التعاون مع الباحثين والخبراء في هذا المجال. ويمكن أن يتخذ التعاون أيضًا شكل تحالفات بين الصناعات، حيث يجتمع ممثلون من العديد من المجالات معًا للتحقيق في التطبيقات المحتملة للذكاء الاصطناعي التوليدي في مجال الروبوتات. وهذا النهج متعدد التخصصات، الذي يجمع بين المعرفة من عدة مجالات، يمكن أن يحفز الابتكار والأفكار الجديدة.
شهد الذكاء الاصطناعي العالمي في سوق الرعاية الصحية نموًا كبيرًا في السنوات الأخيرة بسبب عدة عوامل، مثل زيادة التعاون بين الشركات المختلفة، والتقدم التكنولوجي المتزايد، وزيادة التركيز على تحسين التصوير الطبي وغيرها الكثير. وفقًا لتحليل Data Bridge Market Research، من المتوقع أن ينمو سوق الذكاء الاصطناعي العالمي في سوق الرعاية الصحية بمعدل نمو سنوي مركب (CAGR) يبلغ 32.60٪ في الفترة من 2023 إلى 2031.
لمعرفة المزيد عن الدراسة، قم بزيارة:https://www.databridgemarketresearch.com/ar/reports/global-geneative-ai-in-healthcare-market
فيما يلي بعض الأمثلة المتعلقة بالفرص القادمة للذكاء الاصطناعي التوليدي في الروبوتات:
- في مارس 2024، طورت شركة Nvidia منصة للأجهزة والبرامج تتمتع بقدرات الذكاء الاصطناعي التوليدية لإنشاء روبوتات تشبه البشر. ستتألف المنصة الجديدة من نظام كمبيوتر يعمل على تشغيل الروبوت والذكاء الاصطناعي (AI) إلى جانب مجموعة من الأدوات البرمجية، مثل genAI، لتمكين إنشاء روبوتات تشبه الإنسان. ستكون الروبوتات البشرية قادرة على التصرف بناءً على المدخلات باستخدام مزيج من اللغة والفيديو و"العروض التوضيحية البشرية" والتجارب السابقة بسبب دمج الذكاء الاصطناعي الجيني.
- في مارس 2024، أعلنت Amazon Web Services (AWS) وNvidia Corporation أن AWS ستوفر قريبًا منصة NVIDIA Blackwell GPU الجديدة، والتي كشفت عنها NVIDIA في GTC 2024. ومن أجل مساعدة العملاء على إطلاق العنان لقدرات الذكاء الاصطناعي التوليدي الجديدة (AI)، ستعمل AWS تقدم الآن وحدات معالجة الرسومات NVIDIA GB200 Grace Blackwell Superchip وB100 Tensor Core، مما يوسع تعاونهم الاستراتيجي طويل الأمد. وستعمل الشركتان معًا على تقديم البنية التحتية والبرامج والخدمات الأكثر تقدمًا وأمانًا
- في يناير 2024، قدمت شركة Nvidia وشركاؤها Boston Dynamics وSanctuary AI وCovariant وUnitree Robotics وCollaborative Robotics وآخرون أحدث شراكاتها واختراعاتها للجمع بين الذكاء الاصطناعي التوليدي والروبوتات معًا في معرض CES 2024 في لاس فيغاس. وقد تم عرض عدد من التقنيات المتطورة من خلال قائمة شركاء السيارات، مما يدل على الإمكانات الثورية للذكاء الاصطناعي في هندسة المركبات والأداء والتصميم. تشهد صناعة السيارات استيعابًا سريعًا للذكاء الاصطناعي التوليدي والحوسبة المعرفة بالبرمجيات، مما يؤدي إلى تحقيق اختراقات من المتوقع أن تحدث تحولًا كاملاً في القيادة في العام المقبل
خاتمة
بحلول عام 2024، سيكون مجال روبوتات الذكاء الاصطناعي المهندسة وراثيا قد تقدم بشكل كبير وسيُحدث ثورة في الصناعات بشكل أسرع مما كان عليه في الماضي. لقد فتحت الروبوتات والذكاء الاصطناعي معًا مجموعة واسعة من الفرص، مما أحدث ثورة في الحياة اليومية والصناعة. بينما نجتاز المشهد المتطور لروبوتات الذكاء الاصطناعي التوليدي. هناك أدلة على أن التعاون بين الذكاء الاصطناعي والروبوتات يخلق عالما تتعايش فيه الآلات الذكية مع الناس، وتوفر حلولا إبداعية وتعزز التجارب اليومية.