>سوق التعلم الآلي كخدمة في إسبانيا، حسب الخدمة (الخدمة المُدارة، الخدمة المهنية، الخدمة المهنية)، وظيفة العمل (الموارد البشرية، المبيعات والتسويق، التمويل، والتشغيل)، نموذج النشر (السحابة، في الموقع)، حجم المنظمة (المنظمة الكبيرة، المنظمة الصغيرة والمتوسطة)، التطبيق (اكتشاف الأدوية، الكشف عن الاحتيال وإدارة المخاطر، معالجة اللغة الطبيعية، التسويق والإعلان، الأمن والمراقبة، التعرف على الصور ، التحليلات التنبؤية، استخراج البيانات، الواقع المعزز والافتراضي)، المستخدم النهائي (الخدمات المصرفية، الخدمات المالية، والتأمين، تكنولوجيا المعلومات والاتصالات، البحث والأكاديمية، الحكومة والقطاع العام، التجزئة والتجارة الإلكترونية، التصنيع، الرعاية الصحية والأدوية، السفر والخدمات اللوجستية، الطاقة والمرافق، وسائل الإعلام والترفيه) - اتجاهات الصناعة والتوقعات حتى عام 2029
تحليل السوق والحجم
تركز الشركات العاملة في سوق التعلم الآلي كخدمة على الصناعات الأساسية مثل التكنولوجيا الصحية والخدمات المصرفية والمالية والتأمين والاتصالات لتحديد تدفقات الإيرادات المستقرة بعد أزمة فيروس كورونا. ومع ذلك، يبدو أن الأخطاء التكنولوجية ونقص المتخصصين الخبراء ذوي الخبرة في التعلم الآلي من بين العوامل الرئيسية المقيدة في تبني التعلم الآلي من قبل المنظمات. وهذا يشكل عقبات في تنفيذ منصات التعلم الآلي كخدمة. بالإضافة إلى ذلك، يؤثر نقص أمن البيانات بسبب نقص الأجهزة سلبًا على توسع السوق. وبالتالي، يجب على المشاركين في سوق التعلم الآلي كخدمة التعاون مع الحكومة والمنظمات التقييدية لتوحيد معايير التعلم الآلي كشركة خدمة.
تشير تحليلات Data Bridge Market Research إلى أن قيمة سوق التعلم الآلي كخدمة، والتي بلغت 5.45 مليار دولار أمريكي في عام 2021، من المتوقع أن تصل إلى قيمة 79.34 مليار دولار أمريكي بحلول عام 2029، بمعدل نمو سنوي مركب قدره 39.76٪ خلال الفترة المتوقعة 2022-2029.
تعريف السوق
التعلم الآلي هو تقنية توفر لأجهزة الكمبيوتر القدرة على تعلم وتغيير الوظائف الأساسية عند تعرضها لمجموعات بيانات مختلفة. أصبح التعلم الآلي الأداة الأكثر أهمية للأعمال التجارية. تقوم شركات التكنولوجيا العملاقة مثل أمازون وجوجل بإنفاق ضخم من أجل زيادة وتعزيز قاعدة عملائها.
نطاق التقرير وتقسيم السوق
تقرير القياس |
تفاصيل |
فترة التنبؤ |
2022 إلى 2029 |
سنة الأساس |
2021 |
سنوات تاريخية |
2020 (قابلة للتخصيص حتى 2019 - 2014) |
وحدات كمية |
الإيرادات بالمليارات من الدولارات الأمريكية، الأحجام بالوحدات، التسعير بالدولار الأمريكي |
القطاعات المغطاة |
الخدمة (الخدمة المُدارة، الخدمة المهنية، الخدمة المهنية)، وظيفة العمل (الموارد البشرية، المبيعات والتسويق، التمويل، والتشغيل)، نموذج النشر (السحابة، في الموقع)، حجم المنظمة (المنظمة الكبيرة، المنظمة الصغيرة والمتوسطة)، التطبيق (اكتشاف الأدوية، الكشف عن الاحتيال وإدارة المخاطر، معالجة اللغة الطبيعية، التسويق والإعلان، الأمن والمراقبة، التعرف على الصور، التحليلات التنبؤية، استخراج البيانات، الواقع المعزز والافتراضي)، المستخدم النهائي (الخدمات المصرفية، الخدمات المالية، والتأمين، تكنولوجيا المعلومات والاتصالات، البحث والأكاديمية، الحكومة والقطاع العام، التجزئة والتجارة الإلكترونية، التصنيع، الرعاية الصحية والأدوية، السفر والخدمات اللوجستية، الطاقة والمرافق، وسائل الإعلام والترفيه) |
الجهات الفاعلة في السوق المشمولة |
Google (الولايات المتحدة)، Microsoft (الولايات المتحدة)، IBM (الولايات المتحدة)، SAP (ألمانيا)، Amazon Web Services, Inc. (الولايات المتحدة) |
فرص السوق |
|
ديناميكيات سوق التعلم الآلي كخدمة في إسبانيا
يتناول هذا القسم فهم محركات السوق والمزايا والفرص والقيود والتحديات. ويتم مناقشة كل هذا بالتفصيل على النحو التالي:
السائقين:
- التطورات في التكنولوجيا
إن التطورات والابتكارات السريعة تحدث في مجال تقنيات التعرف على الإيماءات. ويقوم العديد من مزودي الحلول بالكثير من العمل في هذه المجالات. على سبيل المثال، أطلقت شركة Affectiva مؤخرًا تقنية تحليل المشاعر التي تحتوي على أكبر مستودع بيانات لأكثر من مليوني مقطع فيديو للوجه، مما يسمح لعملائها بتحقيق دقة عالية مع رؤى لا مثيل لها. وبصرف النظر عن ذلك، فإن اللاعبين البديلين مثل اللاعبين الصغار مثل Cognitec System و Emotient و Gesturetek و Saffron و Palantir يقومون بإحداث تقدم كبير في مجال التعرف على الإيماءات والتعرف على الوجه والحوسبة النفسية وتحليلات الخلايا الجسدية. ومن المتوقع أن تغذي هذه التطورات نمو السوق في السنوات القادمة.
- تخزين البيانات والأرشفة
في خوارزميات التعلم العميق، تلعب حزمة تخزين المعلومات والأرشفة دورًا مهمًا في التنبؤ بالحلول للقضايا المعقدة للغاية. نظرًا لأن برنامج خوارزمية التعلم العميق يتعامل مع شبكة عصبية اصطناعية مكونة من العديد من الطبقات، فإنه يحتاج إلى كمية كبيرة من مجموعات المعلومات لتوفير النتيجة. يستخدم برنامج خوارزمية التعلم العميق حزمة تخزين المعلومات والأرشفة للتركيز على الوظائف المتقدمة داخل الشبكة العصبية الاصطناعية.
- النمذجة والمعالجة
على مدى العقد الماضي، تطورت تقنيات التعلم الآلي إلى "خوارزميات" تم تطويرها من مجالات عديدة جنبًا إلى جنب مع الإحصاء والحساب وعلم الأعصاب والحوسبة، مما يجعلها قابلة للتطبيق تجاريًا ومتينة حسابيًا. تستخدم العديد من التطبيقات المقدمة اليوم مثل التعرف على الكلام واكتشاف الاحتيال وتطوير الشبكات مجموعة من تقنيات التعلم الآلي المدعومة بالتصنيف والانحدار والتقدير لمعالجة مجموعات البيانات المنظمة.
- واجهة برمجة التطبيقات المستندة إلى السحابة والويب (APIS)
في قواعد التعلم الآلي، يعد الطلب على المعلومات معلمة إدخال حيوية. تحتاج العديد من القطاعات التجارية مثل الخدمات المصرفية والمالية إلى كمية كبيرة من المعلومات على الفور للتنبؤ بسلوك السوق. تحصل خوارزميات التعلم الآلي على وقت أقل بكثير للتنبؤ بالحلول عند جمع المعلومات من حزمة برامج تخزين البيانات والأرشفة. للتغلب على هذه الجودة، تنتج خوارزميات التعلم الآلي واجهة بين السحابة ومنصات التطبيقات.
فرص:
- زيادة الاستثمارات في قطاع الرعاية الصحية
في مجال الطب، يتم نشر بيانات ضخمة لحساب الإحصائيات الصعبة بكميات هائلة وبالتالي تقديم اتجاهات وأنماط مهمة للتطبيقات في مجال الرعاية الصحية. تساعد البيانات الضخمة الأطباء في توقع المشكلات قبل حدوثها. لقد أحدثت مجموعة Elsevier Health Analytics ثورة في رعاية المرضى في ألمانيا الغربية من خلال نشر البيانات الضخمة. تتعاون الشركة بشكل وثيق مع خبراء الاقتصاد الصحي والأطباء والإحصائيين ومتخصصي تكنولوجيا المعلومات والمحللين من أجل زيادة البيانات القائمة على الأدلة حول العلاجات المقبولة. يمكن إدارة ذلك من خلال البيانات الضخمة في الرعاية الصحية واستخدامها بشكل مناسب من قبل المتخصصين الطبيين بمساعدة الذكاء الاصطناعي. أدى إعداد البيانات الضخمة في الرعاية الصحية إلى زيادة توسع سوق التعلم الآلي في ألمانيا.
القيود/التحديات:
إن الافتقار إلى العمالة الماهرة لوضع التعلم الآلي كخدمة في السوق قد يكون مشكلة رئيسية من شأنها أن تعيق نمو سوق التعلم الآلي كخدمة في العالم إلى حد كبير. بالإضافة إلى ذلك، ترغب الشركات في أن تقوم الخدمات الماهرة بتخصيص وظائف محددة لتنفيذها على منصات التعلم الآلي كخدمة الخاصة بها. ومن المتوقع أن تشكل مشكلات الامتثال الصارمة مشكلة أخرى تقيد السوق المستهدفة.
يقدم تقرير سوق التعلم الآلي كخدمة هذا تفاصيل عن التطورات الحديثة الجديدة واللوائح التجارية وتحليل الاستيراد والتصدير وتحليل الإنتاج وتحسين سلسلة القيمة وحصة السوق وتأثير اللاعبين المحليين والمحليين في السوق وتحليل الفرص من حيث جيوب الإيرادات الناشئة والتغييرات في لوائح السوق وتحليل نمو السوق الاستراتيجي وحجم السوق ونمو سوق الفئات ومنافذ التطبيق والهيمنة وموافقات المنتجات وإطلاق المنتجات والتوسعات الجغرافية والابتكارات التكنولوجية في السوق. للحصول على مزيد من المعلومات حول سوق التعلم الآلي كخدمة، اتصل بـ Data Bridge Market Research للحصول على موجز محلل، وسيساعدك فريقنا في اتخاذ قرار سوقي مستنير لتحقيق نمو السوق.
تأثير COVID-19 على سوق التعلم الآلي كخدمة
لقد أدى جائحة كوفيد-19 إلى تسريع الاهتمام بالتعلم الآلي لأن العالم يمارس تقنيات التباعد الاجتماعي. يجب أن يكون دمج التعلم الآلي كسوق خدمة ممكنًا من خلال كل نظام برمجي وخدمات اعتمادًا على حجم وطبيعة التكامل. أصبح استخدام كاميرات الحرارة وأطر تحديد المجموعات أمرًا شائعًا في جميع المحطات الجوية ومحطات القطارات وأماكن مختلفة من الزيارات العامة. وقد أدى هذا إلى وضع التعلم الآلي كسوق خدمة تحت دائرة الضوء، وهو ما من المتوقع أن يعزز السوق المستهدفة. بالإضافة إلى ذلك، فإن استخدام الذكاء الاصطناعي للتعرف على وجود الأشخاص عبر المناطق المحصورة في العيادات المرتبطة بمراكز رعاية كوفيد له تأثير إيجابي على سوق التعلم الآلي كخدمة العالمي. لقد تحسنت الحسابات المستخدمة للذكاء الاصطناعي والتحليل من خلال متابعة جيدة في وقت متأخر مما يخلق فرصة ديناميكية للاعبين / الموردين العاملين في سوق التعلم الآلي كخدمة.
نطاق سوق التعلم الآلي كخدمة في إسبانيا
يتم تقسيم سوق التعلم الآلي كخدمة على أساس الخدمة ونموذج نشر وظيفة العمل وحجم المنظمة والتطبيق والمستخدم النهائي. سيساعدك النمو بين هذه القطاعات على تحليل قطاعات النمو الضئيلة في الصناعات وتزويد المستخدمين بنظرة عامة قيمة على السوق ورؤى السوق لمساعدتهم على اتخاذ قرارات استراتيجية لتحديد تطبيقات السوق الأساسية.
خدمة
- الخدمة المُدارة
- احترافي
- خدمة احترافية
وظيفة الأعمال
- الموارد البشرية
- المبيعات والتسويق
- التمويل والتشغيل
نموذج النشر
- سحاب
- في الموقع
حجم المنظمة
- منظمة كبيرة
- المنظمات الصغيرة والمتوسطة
طلب
- اكتشاف الأدوية
- كشف الاحتيال وإدارة المخاطر
- معالجة اللغة الطبيعية
- التسويق والإعلان
- الأمن والمراقبة
- التعرف على الصور
- التحليلات التنبؤية
- استخراج البيانات
- الواقع المعزز والواقع الافتراضي
المستخدم النهائي
- الخدمات المصرفية والمالية
- تأمين
- تكنولوجيا المعلومات والاتصالات
- البحث والأكاديمي
- الحكومة والقطاع العام
- التجزئة والتجارة الإلكترونية
- تصنيع
- الرعاية الصحية والأدوية
- السفر والخدمات اللوجستية
- الطاقة والمرافق
- الإعلام والترفيه
تحليل المشهد التنافسي وحصة سوق التعلم الآلي كخدمة
يوفر المشهد التنافسي لسوق التعلم الآلي كخدمة تفاصيل حسب المنافس. تتضمن التفاصيل نظرة عامة على الشركة، والبيانات المالية للشركة، والإيرادات المولدة، وإمكانات السوق، والاستثمار في البحث والتطوير، ومبادرات السوق الجديدة، والحضور العالمي، ومواقع الإنتاج والمرافق، والقدرات الإنتاجية، ونقاط القوة والضعف في الشركة، وإطلاق المنتج، وعرض المنتج ونطاقه، وهيمنة التطبيق. ترتبط نقاط البيانات المذكورة أعلاه فقط بتركيز الشركات فيما يتعلق بسوق التعلم الآلي كخدمة.
بعض اللاعبين الرئيسيين العاملين في سوق التعلم الآلي كخدمة هم:
- جوجل (الولايات المتحدة)
- مايكروسوفت (الولايات المتحدة)،
- آي بي إم (الولايات المتحدة)،
- SAP (ألمانيا)،
- Amazon Web Services, Inc. (الولايات المتحدة)
SKU-
احصل على إمكانية الوصول عبر الإنترنت إلى التقرير الخاص بأول سحابة استخبارات سوقية في العالم
- لوحة معلومات تحليل البيانات التفاعلية
- لوحة معلومات تحليل الشركة للفرص ذات إمكانات النمو العالية
- إمكانية وصول محلل الأبحاث للتخصيص والاستعلامات
- تحليل المنافسين باستخدام لوحة معلومات تفاعلية
- آخر الأخبار والتحديثات وتحليل الاتجاهات
- استغل قوة تحليل المعايير لتتبع المنافسين بشكل شامل
Table of Content
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF SPAIN MACHINE LEARNING AS A SERVICE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE SPAIN MACHINE LEARNING AS A SERVICE MARKET SIZE
2.3 VENDOR POSITIONING GRID
2.4 TECHNOLOGY LIFE LINE CURVE
2.5 MULTIVARIATE MODELLING
2.6 TOP TO BOTTOM ANALYSIS
2.7 STANDARDS OF MEASUREMENT
2.8 VENDOR SHARE ANALYSIS
2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.1 DATA POINTS FROM KEY SECONDARY DATABASES
2.11 SPAIN MACHINE LEARNING AS A SERVICE MARKET: RESEARCH SNAPSHOT
2.12 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
6 PORTER’S FIVE FORCE MODEL
6.1 OVERVIEW
6.2 BARGAINING POWER OF BUYERS
6.3 BARGAINING POWER OF SUPPLIERS
6.4 THREAT OF NEW ENTRANTS
6.5 THREAT OF SUBSTITUTES
6.6 THREAT OF RIVALRY
7 INDUSTRY INSIGHTS
8 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY COMPONENT
8.1 OVERVIEW
8.2 SOFTWARE
8.3 SERVICE
8.3.1 BY TYPE
8.3.2 PROFESSIONAL SERVICE
8.3.2.1. CONSULTING & TRAINING SERVICES
8.3.2.2. SUPPORT & MAINTENANCE SERVICES
8.3.2.3. IMPLEMENTATION SERVICES
8.3.3 MANAGED SERVICE
9 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY BUSINESS FUNCTION
9.1 OVERVIEW
9.2 HUMAN RESOURCES
9.3 SALES AND MARKETING
9.4 FINANCE
9.5 OPERATION
10 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY DEPLOYMENT MODEL
10.1 OVERVIEW
10.2 CLOUD
10.3 ON-PREMISE
11 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY ORGANIZATION SIZE
11.1 OVERVIEW
11.2 LARGE ORGANIZATION
11.2.1 BY DEPLOYMENT MODEL
11.2.1.1. CLOUD
11.2.1.2. ON-PREMISE
11.3 SMALL & MEDIUM ORGANIZATION
11.3.1 BY DEPLOYMENT MODEL
11.3.1.1. CLOUD
11.3.1.2. ON-PREMISE
12 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY APPLICATION
12.1 OVERVIEW
12.2 DATA MINING
12.3 NATURAL LANGUAGE PROCESSING
12.4 IMAGE RECOGNITION
12.5 DRUG DISCOVERY
12.6 PREDICTIVE ANALYTICS
12.7 FRAUD DETECTION AND RISK MANAGEMENT
12.8 MARKETING AND ADVERTISING
12.9 AUGMENTED & VIRTUAL REALITY
12.1 SECURITY AND SURVEILLANCE
12.11 OTHERS
13 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY END-USER
13.1 OVERVIEW
13.2 BANKING, FINANCIAL SERVICES, AND INSURANCE
13.2.1 BY OFFERING
13.2.1.1. SOFTWARE
13.2.1.2. SERVICES
13.3 IT AND TELECOMMUNICATION
13.3.1 BY OFFERING
13.3.1.1. SOFTWARE
13.3.1.2. SERVICES
13.4 RESEARCH AND ACADEMIC
13.4.1 BY OFFERING
13.4.1.1. SOFTWARE
13.4.1.2. SERVICES
13.5 GOVERNMENT AND PUBLIC SECTOR
13.5.1 BY OFFERING
13.5.1.1. SOFTWARE
13.5.1.2. SERVICES
13.6 RETAIL & ECOMMERCE
13.6.1 BY OFFERING
13.6.1.1. SOFTWARE
13.6.1.2. SERVICES
13.7 MANUFACTURING
13.7.1 BY OFFERING
13.7.1.1. SOFTWARE
13.7.1.2. SERVICES
13.8 HEALTHCARE AND PHARMACEUTICALS
13.8.1 BY OFFERING
13.8.1.1. SOFTWARE
13.8.1.2. SERVICES
13.9 TRAVEL & LOGISTICS
13.9.1 BY OFFERING
13.9.1.1. SOFTWARE
13.9.1.2. SERVICES
13.1 ENERGY AND UTILITY
13.10.1 BY OFFERING
13.10.1.1. SOFTWARE
13.10.1.2. SERVICES
13.10.2 BY OFFERING
13.10.2.1. SOFTWARE
13.10.2.2. SERVICES
13.11 MEDIA AND ENTERTAINMENT
13.11.1 BY OFFERING
13.11.1.1. SOFTWARE
13.11.1.2. SERVICES
13.12 ACADEMIA AND RESEARCH
13.12.1 BY OFFERING
13.12.1.1. SOFTWARE
13.12.1.2. SERVICES
13.13 OTHERS
14 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: SPAIN
14.2 MERGERS & ACQUISITIONS
14.3 NEW PRODUCT DEVELOPMENT & APPROVALS
14.4 EXPANSIONS
14.5 REGULATORY CHANGES
14.6 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
15 SPAIN MACHINE LEARNING AS A SERVICE MARKET, SWOT & DBMR ANALYSIS
16 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY PROFILE
16.1 MICROSOFT
16.1.1 COMPANY SNAPSHOT
16.1.2 REVENUE ANALYSIS
16.1.3 GEOGRAPHIC PRESENCE
16.1.4 PRODUCT PORTFOLIO
16.1.5 RECENT DEVELOPMENTS
16.2 AMAZON WEB SERVICES, INC.
16.2.1 COMPANY SNAPSHOT
16.2.2 GEOGRAPHIC PRESENCE
16.2.3 PRODUCT PORTFOLIO
16.2.4 RECENT DEVELOPMENTS
16.3 GOOGLE,LLC
16.3.1 COMPANY SNAPSHOT
16.3.2 GEOGRAPHIC PRESENCE
16.3.3 REVENUE ANALYSIS
16.3.4 PRODUCT PORTFOLIO
16.3.5 RECENT DEVELOPMENTS
16.4 IBM
16.4.1 COMPANY SNAPSHOT
16.4.2 GEOGRAPHIC PRESENCE
16.4.3 REVENUE ANALYSIS
16.4.4 PRODUCT PORTFOLIO
16.4.5 RECENT DEVELOPMENTS
16.5 SAP SE
16.5.1 COMPANY SNAPSHOT
16.5.2 GEOGRAPHIC PRESENCE
16.5.3 PRODUCT PORTFOLIO
16.5.4 RECENT DEVELOPMENTS
16.6 BIGML
16.6.1 COMPANY SNAPSHOT
16.6.2 GEOGRAPHIC PRESENCE
16.6.3 PRODUCT PORTFOLIO
16.6.4 RECENT DEVELOPMENTS
16.7 ISHIR
16.7.1 COMPANY SNAPSHOT
16.7.2 GEOGRAPHIC PRESENCE
16.7.3 PRODUCT PORTFOLIO
16.7.4 RECENT DEVELOPMENTS
16.8 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP
16.8.1 COMPANY SNAPSHOT
16.8.2 GEOGRAPHIC PRESENCE
16.8.3 PRODUCT PORTFOLIO
16.8.4 RECENT DEVELOPMENTS
16.9 SAS INSTITUTE INC.
16.9.1 COMPANY SNAPSHOT
16.9.2 GEOGRAPHIC PRESENCE
16.9.3 PRODUCT PORTFOLIO
16.9.4 RECENT DEVELOPMENTS
16.1 FICO
16.10.1 COMPANY SNAPSHOT
16.10.2 GEOGRAPHIC PRESENCE
16.10.3 PRODUCT PORTFOLIO
16.10.4 RECENT DEVELOPMENTS
17 QUESTIONNAIRE
18 CONCLUSION
19 RELATED REPORTS
20 ABOUT DATA BRIDGE MARKET RESEARCH
منهجية البحث
يتم جمع البيانات وتحليل سنة الأساس باستخدام وحدات جمع البيانات ذات أحجام العينات الكبيرة. تتضمن المرحلة الحصول على معلومات السوق أو البيانات ذات الصلة من خلال مصادر واستراتيجيات مختلفة. تتضمن فحص وتخطيط جميع البيانات المكتسبة من الماضي مسبقًا. كما تتضمن فحص التناقضات في المعلومات التي شوهدت عبر مصادر المعلومات المختلفة. يتم تحليل بيانات السوق وتقديرها باستخدام نماذج إحصائية ومتماسكة للسوق. كما أن تحليل حصة السوق وتحليل الاتجاهات الرئيسية هي عوامل النجاح الرئيسية في تقرير السوق. لمعرفة المزيد، يرجى طلب مكالمة محلل أو إرسال استفسارك.
منهجية البحث الرئيسية التي يستخدمها فريق بحث DBMR هي التثليث البيانات والتي تتضمن استخراج البيانات وتحليل تأثير متغيرات البيانات على السوق والتحقق الأولي (من قبل خبراء الصناعة). تتضمن نماذج البيانات شبكة تحديد موقف البائعين، وتحليل خط زمني للسوق، ونظرة عامة على السوق ودليل، وشبكة تحديد موقف الشركة، وتحليل براءات الاختراع، وتحليل التسعير، وتحليل حصة الشركة في السوق، ومعايير القياس، وتحليل حصة البائعين على المستوى العالمي مقابل الإقليمي. لمعرفة المزيد عن منهجية البحث، أرسل استفسارًا للتحدث إلى خبراء الصناعة لدينا.
التخصيص متاح
تعد Data Bridge Market Research رائدة في مجال البحوث التكوينية المتقدمة. ونحن نفخر بخدمة عملائنا الحاليين والجدد بالبيانات والتحليلات التي تتطابق مع هدفهم. ويمكن تخصيص التقرير ليشمل تحليل اتجاه الأسعار للعلامات التجارية المستهدفة وفهم السوق في بلدان إضافية (اطلب قائمة البلدان)، وبيانات نتائج التجارب السريرية، ومراجعة الأدبيات، وتحليل السوق المجدد وقاعدة المنتج. ويمكن تحليل تحليل السوق للمنافسين المستهدفين من التحليل القائم على التكنولوجيا إلى استراتيجيات محفظة السوق. ويمكننا إضافة عدد كبير من المنافسين الذين تحتاج إلى بيانات عنهم بالتنسيق وأسلوب البيانات الذي تبحث عنه. ويمكن لفريق المحللين لدينا أيضًا تزويدك بالبيانات في ملفات Excel الخام أو جداول البيانات المحورية (كتاب الحقائق) أو مساعدتك في إنشاء عروض تقديمية من مجموعات البيانات المتوفرة في التقرير.