>الذكاء الاصطناعي في سوق اكتشاف الأدوية في الشرق الأوسط وأفريقيا، حسب التطبيق (مرشحي الأدوية الجدد، وتحسين الأدوية وإعادة استخدامها، والاختبارات والموافقات قبل السريرية، ومراقبة الأدوية، والعثور على أهداف ومسارات جديدة مرتبطة بالأمراض، وفهم آليات المرض، وتجميع المعلومات وتوليفها، وتشكيل وتأهيل الفرضيات، وتصميم الأدوية الجديدة، والعثور على أهداف دوائية لدواء قديم وغيرها)، والتكنولوجيا (التعلم الآلي، والتعلم العميق، ومعالجة اللغة الطبيعية وغيرها)، ونوع الدواء (الجزيء الصغير والجزيء الكبير)، والعرض (البرمجيات والخدمات)، والمؤشر (علم الأورام المناعي، والأمراض العصبية التنكسية، وأمراض القلب والأوعية الدموية، والأمراض الأيضية وغيرها)، والاستخدام النهائي (منظمات البحوث التعاقدية (CROs)، وشركات الأدوية والتكنولوجيا الحيوية، ومراكز البحوث والمعاهد الأكاديمية وغيرها) واتجاهات الصناعة والتوقعات حتى عام 2029.
تحليل ورؤى حول سوق الذكاء الاصطناعي في اكتشاف الأدوية في الشرق الأوسط وأفريقيا
من المتوقع أن يكون الذكاء الاصطناعي تقنية مربحة في صناعة الرعاية الصحية. إن تطبيق الذكاء الاصطناعي يقلل من فجوة البحث والتطوير في عملية تصنيع الأدوية ويساعد في التصنيع المستهدف للأدوية. وبالتالي، تتجه شركات الأدوية الحيوية إلى الذكاء الاصطناعي لتعزيز حصتها في السوق. الذكاء الاصطناعي لاكتشاف الأدوية هو تقنية تستخدم الآلات لمحاكاة الذكاء البشري لحل التحديات المعقدة في عملية تطوير الأدوية.
يؤدي تبني حلول الذكاء الاصطناعي في عملية التجارب السريرية إلى إزالة العقبات المحتملة، وتقليل وقت دورة التجارب السريرية، وزيادة إنتاجية ودقة عملية التجارب السريرية. تعد التطورات التكنولوجية في الذكاء الاصطناعي لاكتشاف الأدوية والحد من إجمالي الوقت المستغرق في عملية اكتشاف الأدوية عوامل أخرى تدفع نمو السوق في فترة التنبؤ. ومع ذلك، فإن البيانات المتاحة ذات الجودة المنخفضة وغير المتسقة ستعيق نمو السوق. كما أن التكلفة العالية المرتبطة بالتكنولوجيا والقيود الفنية ستقيد نمو السوق.
تحلل شركة Data Bridge Market Research أن سوق الذكاء الاصطناعي في اكتشاف الأدوية في الشرق الأوسط وأفريقيا من المتوقع أن تصل قيمته إلى 548.76 مليون دولار أمريكي بحلول عام 2029، بمعدل نمو سنوي مركب قدره 47.1٪ خلال الفترة المتوقعة. تشكل البرمجيات أكبر شريحة تقنية في السوق بسبب التطورات السريعة في التقدم التكنولوجي لتسويق استخدام الذكاء الاصطناعي في سوق اكتشاف الأدوية. يغطي تقرير السوق هذا أيضًا تحليل الأسعار وتحليل براءات الاختراع والتقدم التكنولوجي بعمق.
تقرير القياس |
تفاصيل |
فترة التنبؤ |
2022 إلى 2029 |
سنة الأساس |
2021 |
سنوات تاريخية |
2020 (قابلة للتخصيص حتى 2019-2014) |
وحدات كمية |
الإيرادات بالملايين من الدولارات الأمريكية، التسعير بالدولار الأمريكي |
القطاعات المغطاة |
حسب التطبيق (مرشحي الأدوية الجديدة، وتحسين الأدوية وإعادة استخدامها، والاختبارات والموافقات السريرية المسبقة، ومراقبة الأدوية، والعثور على أهداف ومسارات جديدة مرتبطة بأمراض جديدة، وفهم آليات المرض، وتجميع المعلومات وتوليفها، وتكوين وتأهيل الفرضيات، وتصميم الأدوية الجديدة، والعثور على أهداف دوائية لدواء قديم وغيرها)، والتكنولوجيا (التعلم الآلي، والتعلم العميق، ومعالجة اللغة الطبيعية وغيرها)، ونوع الدواء (جزيء صغير وجزيء كبير)، والعرض (البرمجيات والخدمات)، والمؤشر (علم الأورام المناعي، والأمراض العصبية التنكسية، وأمراض القلب والأوعية الدموية، والأمراض الأيضية وغيرها)، والاستخدام النهائي (منظمات البحوث التعاقدية، وشركات الأدوية والتكنولوجيا الحيوية، ومراكز البحوث والمعاهد الأكاديمية وغيرها) |
الدول المغطاة |
الإمارات العربية المتحدة، إسرائيل، جنوب أفريقيا، المملكة العربية السعودية، مصر، بقية دول الشرق الأوسط وأفريقيا |
الجهات الفاعلة في السوق المشمولة |
بعض اللاعبين الرئيسيين العاملين في السوق هم NVIDIA Corporation و IBM Corp. و Atomwise Inc. و Microsoft و Benevolent AI و Aria Pharmaceuticals, Inc. و DEEP GENOMICS و Exscientia و Cloud و Insilico Medicine و Cyclica و NuMedii, Inc. و Envisagenics و Owkin Inc. و BERG LLC و Schrödinger, Inc. و XtalPi Inc. و BIOAGE Inc. من بين آخرين |
تعريف سوق الذكاء الاصطناعي في اكتشاف الأدوية في الشرق الأوسط وأفريقيا
لقد لفت الذكاء الاصطناعي انتباه وعقول ممارسي التكنولوجيا الطبية في السنوات القليلة الماضية، حيث عملت العديد من الشركات ومختبرات الأبحاث الكبرى على إتقان هذه التقنيات للاستخدام السريري. تتوفر الآن أول عروض تجارية لكيفية مساعدة الذكاء الاصطناعي (المعروف أيضًا باسم التعلم العميق (DL) أو التعلم الآلي (ML) أو الشبكات العصبية الاصطناعية (ANNs)) للأطباء. يمكن أن تؤدي هذه الأنظمة إلى تحول نموذجي في سير عمل الأطباء، وزيادة الإنتاجية مع تعزيز العلاج وإنتاجية المريض في نفس الوقت. الذكاء الاصطناعي لاكتشاف الأدوية هو تقنية تستخدم الآلات لمحاكاة الذكاء البشري لحل التحديات المعقدة في إجراءات تطوير الأدوية. يؤدي تبني حلول الذكاء الاصطناعي في عملية التجارب السريرية إلى إزالة العقبات المحتملة، وتقليل وقت دورة التجارب السريرية، وزيادة إنتاجية ودقة عملية التجارب السريرية. لذلك، يكتسب تبني حلول الذكاء الاصطناعي المتقدمة هذه في عمليات اكتشاف الأدوية شعبية بين أصحاب المصلحة في صناعة العلوم الحيوية. في قطاع الأدوية، يساعد في اكتشاف المركبات الجديدة، وتحديد الأهداف العلاجية، وتطوير الأدوية المخصصة. يمكن أن تثبت منصات الذكاء الاصطناعي المستخدمة في اكتشاف الأدوية أنها خيار ممكن لاستخلاص رؤى حول اكتشاف الأدوية لعلاج وتقليل شدة الأمراض المزمنة المختلفة.
ديناميكيات سوق الذكاء الاصطناعي في اكتشاف الأدوية في الشرق الأوسط وأفريقيا
يتناول هذا القسم فهم محركات السوق والمزايا والفرص والقيود والتحديات. وسيتم مناقشة كل هذا بالتفصيل أدناه:
السائقين
- ارتفاع معدلات الإصابة بالأمراض المزمنة يدفع إلى الحاجة إلى الذكاء الاصطناعي في اكتشاف الأدوية
يتزايد معدل الإصابة بالأمراض المزمنة بوتيرة سريعة في جميع أنحاء العالم. ووفقًا لمراكز السيطرة على الأمراض والوقاية منها (CDC)، فإن ستة من كل 10 بالغين في الولايات المتحدة يعانون من مرض مزمن. وعلاوة على ذلك، تسلط مراكز السيطرة على الأمراض والوقاية منها الضوء أيضًا على أن الأمراض المزمنة مثل أمراض القلب والسكري هي الأسباب الرئيسية للوفاة في الولايات المتحدة. تسلط مثل هذه الإحصائيات الضوء على الانتشار المتزايد للأمراض المزمنة والحاجة إلى خفض معدل الوفيات الناجمة عن هذه الأمراض.
يمكن أن تثبت منصات الذكاء الاصطناعي المستخدمة في اكتشاف الأدوية أنها خيار مجدٍ لاستخلاص رؤى حول اكتشاف الأدوية لعلاج وتقليل شدة الأمراض المزمنة المختلفة. وبالتالي، من المتوقع أن تعمل هذه العوامل كمحرك لنمو السوق خلال فترة التنبؤ.
- التعاون الاستراتيجي والشراكات وإطلاق المنتجات
تتمتع الذكاء الاصطناعي بالقدرة على تحويل اكتشاف الأدوية من خلال تسريع الجدول الزمني للبحث والتطوير، مما يجعل تطوير الأدوية أرخص وأسرع، وتحسين احتمالات الموافقة. كما يمكن للذكاء الاصطناعي أن يزيد من فعالية أبحاث إعادة استخدام الأدوية.
إن زيادة التحالفات والتعاونات بين الصناعات المختلفة تدفع السوق إلى الأمام. ومن المتوقع أن يؤدي ارتفاع أهمية الذكاء الاصطناعي في اكتشاف الأدوية وتطويرها، وزيادة التمويل لأنشطة البحث والتطوير، بما في ذلك تكنولوجيا الذكاء الاصطناعي في مجال أبحاث الأدوية، إلى دفع نمو السوق العالمية. وبالتالي، فإن زيادة التعاونات والشراكات بين الصناعات المختلفة تدفع السوق إلى الأمام.
ضبط النفس
- التكلفة العالية المرتبطة بالتكنولوجيا والقيود التقنية
يواجه قطاع الرعاية الصحية الحالي العديد من التحديات المعقدة، مثل ارتفاع تكلفة الأدوية والعلاجات، ويحتاج المجتمع إلى تغييرات كبيرة محددة في هذا المجال. يعتمد نجاح الذكاء الاصطناعي بالكامل على توافر كمية كبيرة من البيانات لأن هذه البيانات تُستخدم للتدريب اللاحق المقدم للنظام. يمكن أن يتسبب الوصول إلى البيانات من مزودي قواعد البيانات المختلفة في تكاليف إضافية للشركة. تتجه التجارب السريرية نحو تحديد سلامة وفعالية منتج دوائي لدى البشر لحالة مرضية معينة وتتطلب من ست إلى سبع سنوات إلى جانب استثمار مالي كبير. ومع ذلك، فإن جزيءًا واحدًا فقط من كل عشرة يدخل هذه التجارب يحصل على الموافقة الناجحة، وهو خسارة فادحة للصناعة. يمكن أن تنتج هذه الإخفاقات عن اختيار غير مناسب للمريض ونقص المتطلبات الفنية والبنية التحتية الرديئة. وبالتالي، فإن زيادة التكاليف مع التكنولوجيا تعمل كقيد لنمو السوق.
فرصة
-
ارتفاع الاستثمارات في البحث والتطوير
إن الارتفاع في أنشطة البحث والتطوير والاعتماد المتزايد على الخدمات والتطبيقات المستندة إلى السحابة من شأنه أن يوفر فرصًا مفيدة لنمو السوق.
تستمر صناعة الذكاء الاصطناعي في مجال الأدوية الحيوية في النمو بعد فترة طويلة من الإنتان. وينعكس هذا في التدفق المستمر للاستثمارات وزيادة عدد التعاونات بين شركات الأدوية وشركات الذكاء الاصطناعي في عام 2021 مقارنة بالأعوام السابقة. يتأثر نمو صناعة الأدوية الحيوية إلى حد كبير بالمشاركة النشطة لشركات الأدوية الرائدة في الاستثمارات المتعلقة بالذكاء الاصطناعي. يتزايد عدد المنشورات العلمية في مجال الذكاء الاصطناعي في مجال الأدوية الحيوية والتعاون البحثي بين شركات الأدوية وبائعي الخبرة في مجال الذكاء الاصطناعي بسرعة، ومع ذلك، لا تزال بعض شركات الأدوية تنتقد تطبيقات الذكاء الاصطناعي. تؤدي تطبيقات التعلم الآلي والذكاء الاصطناعي في صناعات الأدوية والرعاية الصحية إلى تشكيل مجال جديد متعدد التخصصات لاكتشاف الأدوية القائم على البيانات في مجال الرعاية الصحية. وبالتالي، فإن ارتفاع الاستثمار في أنشطة البحث والتطوير يعمل كفرصة لنمو السوق.
تحدي
- نقص المهنيين المهرة
ومن المتوقع أن يعيق نقص المهنيين المهرة نمو السوق. إذ يتعين على الموظفين إعادة التدريب أو تعلم مجموعات مهارات جديدة للعمل بكفاءة على آلات الذكاء الاصطناعي المعقدة للحصول على النتائج المرجوة للدواء. ويشمل هذا التحدي الذي يمنع التبني الكامل للذكاء الاصطناعي في صناعة الأدوية الافتقار إلى الموظفين المهرة لتشغيل المنصات القائمة على الذكاء الاصطناعي، والميزانية المحدودة للمنظمات الصغيرة، والخوف من استبدال البشر مما يؤدي إلى فقدان الوظائف، والتشكك في البيانات التي يولدها الذكاء الاصطناعي، وظاهرة الصندوق الأسود (أي كيف يتم التوصل إلى الاستنتاجات من خلال منصة الذكاء الاصطناعي). ويعمل نقص المهارات كعائق رئيسي أمام اكتشاف الأدوية من خلال الذكاء الاصطناعي، مما يثبط عزيمة الشركات عن تبني الآلات القائمة على الذكاء الاصطناعي لاكتشاف الأدوية.
وبما أن متطلبات المهارات مرتفعة للغاية، فقد تجلى ذلك في شكل تحدٍ للاحتفاظ بالمهنيين ذوي المهارات المحددة وإدارتهم. وعلاوة على ذلك، فإن التقدم التكنولوجي هو جانب آخر يؤدي إلى زيادة الطلب على المهنيين المهرة. وهناك حاجة ملحة لتثقيف المهنيين على التكنولوجيا القائمة على الذكاء الاصطناعي. إن الافتقار إلى المهنيين المدربين وذوي الخبرة والفجوات المستمرة في المهارات تحد من آفاق التوظيف والوصول إلى وظائف ذات جودة. ومن الواضح إذن أن توافر المهنيين المجهزين بالمهارات الكافية يشكل تحديًا لنمو السوق.
تأثير ما بعد كوفيد-19 على الشرق الأوسط وأفريقيا الذكاء الاصطناعي في سوق اكتشاف الأدوية
كان لتفشي فيروس كورونا المستجد تأثير مفيد على توسع الذكاء الاصطناعي في صناعة اكتشاف الأدوية بسبب استخدامه على نطاق واسع من قبل العديد من المنظمات لتحديد وفحص الأدوية الموجودة المستخدمة في علاج فيروس كورونا المستجد. يعد الذكاء الاصطناعي مفيدًا في اكتشاف المواد الكيميائية النشطة للوقاية من فيروس سارس-كوف، وفيروس نقص المناعة البشرية، وفيروس سارس-كوف-2، وفيروس الأنفلونزا، وغيرها. خلال الوباء، اعتمدت الاقتصادات في جميع أنحاء العالم على اكتشاف الأدوية القائمة على الذكاء الاصطناعي بدلاً من عمليات اكتشاف اللقاحات التقليدية، والتي تستغرق سنوات لإنشائها وهي مكلفة بنفس القدر، مما يساهم في نمو السوق.
يتخذ المصنعون قرارات استراتيجية مختلفة للتعافي بعد جائحة كوفيد-19. ويجري اللاعبون أنشطة بحث وتطوير متعددة لتحسين التكنولوجيا المستخدمة في الميكروفون اللاسلكي. وبهذا، ستجلب الشركات برامج الذكاء الاصطناعي المتقدمة والدقيقة إلى السوق.
التطورات الأخيرة
- في مارس 2022، أطلقت شركة NVIDIA Corporation برنامج Clara Holoscan MGX لتطوير ونشر تطبيقات الذكاء الاصطناعي في الوقت الفعلي. يعمل برنامج Clara Holoscan MGX على توسيع منصة Clara Holoscan لتوفير بنية مرجعية شاملة ومخصصة للأجهزة الطبية، بالإضافة إلى دعم البرامج على المدى الطويل، لتسريع الابتكار في صناعة الأجهزة الطبية. سيساعد هذا الشركة على تحسين أداء الذكاء الاصطناعي في قطاع الصحة للجراحة والتشخيص واكتشاف الأدوية.
- في مايو 2022، أعلنت شركة Benevolent AI، وهي شركة رائدة في مجال اكتشاف الأدوية المدعومة بالذكاء الاصطناعي في المرحلة السريرية، أن شركة أسترازينيكا قد اختارت هدفًا جديدًا إضافيًا للتليف الرئوي مجهول السبب (IPF) لمحفظة تطوير الأدوية الخاصة بها، مما أدى إلى دفع مبلغ مهم لشركة Benevolent AI. هذا هو الهدف الجديد الثالث من التعاون الذي تم تحديده باستخدام منصة Benevolent في منطقتين من الأمراض، التليف الرئوي مجهول السبب وأمراض الكلى المزمنة، وتم التحقق من صحته لاحقًا واختياره لدخول المحفظة من قبل شركة أسترازينيكا. ويستند هذا إلى التمديد الأخير للتعاون مع أسترازينيكا ليشمل منطقتين جديدتين من الأمراض، الذئبة الحمامية الجهازية، وقصور القلب، والذي تم توقيعه في يناير 2022. وقد ساعد هذا الشركة على جعل تعاونها أقوى.
نطاق سوق الذكاء الاصطناعي في اكتشاف الأدوية في الشرق الأوسط وأفريقيا
يتم تقسيم سوق الذكاء الاصطناعي في اكتشاف الأدوية في الشرق الأوسط وأفريقيا إلى التطبيق والتكنولوجيا ونوع الدواء والعرض والمؤشر والاستخدام النهائي. يساعدك النمو بين القطاعات على تحليل جيوب النمو والاستراتيجيات المتخصصة للتعامل مع السوق وتحديد مجالات التطبيق الأساسية والاختلاف في الأسواق المستهدفة.
طلب
- مرشحو الأدوية الجديدة
- تحسين الأدوية وإعادة استخدامها والاختبارات والموافقات قبل السريرية
- مراقبة الأدوية
- العثور على أهداف ومسارات جديدة مرتبطة بالأمراض
- فهم آليات المرض
- تجميع المعلومات وتلخيصها
- تكوين وتأهيل الفرضيات
- تصميم جديد للأدوية
- العثور على أهداف دوائية لدواء قديم
- آحرون
بناءً على التطبيق، يتم تقسيم السوق إلى مرشحين للأدوية الجديدة، وتحسين الأدوية وإعادة استخدام الاختبارات والموافقة قبل السريرية، ومراقبة الأدوية، وإيجاد أهداف ومسارات جديدة مرتبطة بالأمراض، وفهم آليات المرض، وتجميع المعلومات وتوليفها، وتشكيل وتأهيل الفرضيات، وتصميم الأدوية الجديدة، وإيجاد أهداف دوائية لدواء قديم، وغيرها.
تكنولوجيا
- التعلم الآلي (ML)
- التعلم العميق
- معالجة اللغة الطبيعية
- آحرون
بناءً على التكنولوجيا، يتم تقسيم السوق إلى التعلم الآلي (ML)، والتعلم العميق (DL)، ومعالجة اللغة الطبيعية (NLP)، وغيرها.
نوع الدواء
- جزيء صغير
- جزيء كبير
Based on drug type, the market is segmented into small molecule and large molecule.
OFFERING
- Software
- Services
Based on offering, the market is segmented into software and services.
INDICATION
- Immuno-Oncology
- Neurodegenerative Diseases
- Cardiovascular Diseases
- Metabolic Diseases
- Others
Based on indication, the market is segmented into immuno-oncology, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and others.
END USE
- Pharmaceutical & Biotechnology Companies
- Contract Research Organizations (CROs)
- Research Centers and Academic Institutes
- Others
Based on end use, the market is segmented into pharmaceutical & biotechnology companies, Contract Research Organizations (CROs), research centers and academic institutes, and others.
Middle East and Africa Artificial Intelligence (AI) in Drug Discovery Market Regional Analysis/Insights
Middle East and Africa Artificial Intelligence (AI) in drug discovery market is analyzed and market size information is provided by application, technology, drug type, offering, indication, and end use.
The countries covered in this market report are U.A.E, Israel, South Africa, Saudi Arabia, Egypt, rest of Middle East and Africa.
- In 2022, Middle East and Africa is dominating due to the increase in government funding. South Africa is expected to grow due to rise in R&D activities for AI in drug discovery.
The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impact the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts, and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of Middle East and Africa brands and their challenges faced due to large or scarce competition from local and domestic brands, and impact of sales channels are considered while providing forecast analysis of the country data.
Competitive Landscape and Middle East and Africa Artificial Intelligence (AI) In Drug Discovery Market Share Analysis
Middle East and Africa Artificial Intelligence (AI) in drug discovery market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, product approvals, patents, product width and breath, application dominance, technology lifeline curve. The above data points provided are only related to the company’s focus on the Middle East and Africa Artificial Intelligence (AI) in drug discovery market.
بعض اللاعبين الرئيسيين العاملين في السوق هم NVIDIA Corporation و IBM Corp. و Atomwise Inc. و Microsoft و Benevolent AI و Aria Pharmaceuticals، Inc. و DEEP GENOMICS و Exscientia و Cloud و Insilico Medicine و Cyclica و NuMedii، Inc. و Envisagenics و Owkin Inc. و BERG LLC و Schrödinger، Inc. و XtalPi Inc. و BIOAGE Inc. من بين آخرين.
SKU-
احصل على إمكانية الوصول عبر الإنترنت إلى التقرير الخاص بأول سحابة استخبارات سوقية في العالم
- لوحة معلومات تحليل البيانات التفاعلية
- لوحة معلومات تحليل الشركة للفرص ذات إمكانات النمو العالية
- إمكانية وصول محلل الأبحاث للتخصيص والاستعلامات
- تحليل المنافسين باستخدام لوحة معلومات تفاعلية
- آخر الأخبار والتحديثات وتحليل الاتجاهات
- استغل قوة تحليل المعايير لتتبع المنافسين بشكل شامل
Table of Content
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATIONS
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 MARKETS COVERED
2.2 GEOGRAPHICAL SCOPE
2.3 YEARS CONSIDERED FOR THE STUDY
2.4 DBMR TRIPOD DATA VALIDATION MODEL
2.5 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS
2.6 MULTIVARIATE MODELLING
2.7 MARKET APPLICATION COVERAGE GRID
2.8 SOURCE LIFELINE CURVE
2.9 DBMR MARKET POSITION GRID
2.1 VENDOR SHARE ANALYSIS
2.11 SECONDARY SOURCES
2.12 ASSUMPTIONS
3 EXECUTIVE SUMMARY
4 PREMIUM INSIGHT
4.1 PESTEL ANALYSIS
4.2 PORETSR’S FIVE FORCES
5 MARKET OVERVIEW
5.1 DRIVERS
5.1.1 THE RISE IN INCIDENCE OF CHRONIC DISEASES PROPELS NEED FOR ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY
5.1.2 STRATEGIC COLLABORATIONS, PARTNERSHIPS, AND PRODUCTS LAUNCH
5.1.3 REDUCTION IN TOTAL TIME INVOLVED IN DRUG DISCOVERY PROCESS
5.1.4 ADVANCEMENT OF ARTIFICIAL INTELLIGENCE IN THE HEALTHCARE INDUSTRY
5.2 RESTRAINTS
5.2.1 HIGH COST ASSOCIATED WITH TECHNOLOGY AND TECHNICAL LIMITATIONS
5.2.2 DISADVANTAGES AND RISKS ASSOCIATED WITH AI IN DRUG DISCOVERY
5.2.3 LACK OF AVAILABLE QUALITY DATA
5.3 OPPORTUNITIES
5.3.1 RISE IN THE INVESTMENTS FOR R&D
5.3.2 RISING HEALTHCARE INFRASTRUCTURE
5.3.3 DEVELOPMENT OF NOVEL TOOLS
5.4 CHALLENGES
5.4.1 THE MIDDLE EAST & AFRICA SHORTAGE OF AI TALENT
5.4.2 ETHICAL, LEGAL, AND REGULATORY ISSUES FOR AI ADOPTION IN THE PHARMACEUTICAL SCIENCES
6 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING
6.1 OVERVIEW
6.2 SOFTWARE
6.2.1 INTEGRATED
6.2.2 STANDALONE
6.3 SERVICES
7 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY
7.1 OVERVIEW
7.2 MACHINE LEARNING (ML)
7.2.1 SUPERVISED LEARNING
7.2.2 UNSUPERVISED LEARNING
7.2.3 REINFORCEMENT LEARNING
7.3 DEEP LEARNING
7.4 NATURAL LANGUAGE PROCESSING (NLP)
7.5 OTHERS
8 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET , BY DRUG TYPE
8.1 OVERVIEW
8.2 SMALL MOLECULE
8.3 LARGE MOLECULE
9 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION
9.1 OVERVIEW
9.2 NOVEL DRUG CANDIDATES
9.2.1 PREDICT BIOACTIVITY OF SMALL MOLECULE
9.2.2 IDENTIFY BIOLOGICS TARGET
9.2.3 OTHERS
9.3 DRUG OPTIMISATION AND RE-PURPOSING PRE-CLINICAL TESTING AND APPROVAL
9.4 DRUG MONITORING
9.5 AGGREGATING AND SYNTHESIZING INFORMATION
9.6 DE NOVO DRUG DESIGN
9.7 FINDING DRUG TARGETS OF AN OLD DRUG
9.8 FORMATION & QUALIFICATION OF HYPOTHESES
9.9 UNDERSTANDING DISEASE MECHANISMS
9.1 FINDING NEW DISEASE-ASSOCIATED TARGETS AND PATHWAYS
9.11 OTHERS
10 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION
10.1 OVERVIEW
10.2 IMMUNE-ONCOLOGY
10.2.1 BREAST CANCER
10.2.2 LUNG CANCER
10.2.3 COLORECTAL CANCER
10.2.4 PROSTATE CANCER
10.2.5 PANCREATIC CANCER
10.2.6 BRAIN CANCER
10.2.7 LEUKEMIA
10.2.8 OTHERS
10.3 NEURODEGENERATIVE DISEASES
10.4 CARDIOVASCULAR DISEASES
10.5 METABOLIC DISEASES
10.6 OTHERS
11 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET , BY END USE
11.1 OVERVIEW
11.2 CONTRACT RESEARCH ORGANIZATIONS
11.3 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES
11.4 RESEARCH CENTERS AND ACADEMIC INSTITUTES
11.5 OTHERS
12 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION
12.1 MIDDLE EAST & AFRICA
12.1.1 SOUTH AFRICA
12.1.2 ISRAEL
12.1.3 SAUDI ARABIA
12.1.4 U.A.E
12.1.5 EGYPT
12.1.6 REST OF MIDDLE EAST AND AFRICA
13 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: COMPANY LANDSCAPE
13.1 COMPANY SHARE ANALYSIS: MIDDLE EAST & AFRICA
14 SWOT ANALYSIS
15 COMPANY PROFILES
15.1 NVIDIA CORPORATION
15.1.1 COMPANY SNAPSHOT
15.1.2 REVENUE ANALYSIS
15.1.3 COMPANY SHARE ANALYSIS
15.1.4 PRODUCT PORTFOLIO
15.1.5 RECENT DEVELOPMENTS
15.2 MICROSOFT
15.2.1 COMPANY SNAPSHOT
15.2.2 REVENUE ANALYSIS
15.2.3 COMPANY SHARE ANALYSIS
15.2.4 PRODUCT PORTFOLIO
15.2.5 RECENT DEVELOPMENT
15.3 IBM CORP
15.3.1 COMPANY SNAPSHOT
15.3.2 REVENUE ANALYSIS
15.3.3 COMPANY SHARE ANALYSIS
15.3.4 PRODUCT PORTFOLIO
15.3.5 RECENT DEVELOPMENT
15.4 SCHRÖDINGER, INC.
15.4.1 COMPANY SNAPSHOT
15.4.2 REVENUE ANALYSIS
15.4.3 COMPANY SHARE ANALYSIS
15.4.4 PRODUCT PORTFOLIO
15.4.5 RECENT DEVELOPMENTS
15.5 BERG LLC
15.5.1 COMPANY SNAPSHOT
15.5.2 COMPANY SHARE ANALYSIS
15.5.3 PRODUCT PORTFOLIO
15.5.4 RECENT DEVELOPMENTS
15.6 ARDIGEN
15.6.1 COMPANY SNAPSHOT
15.6.2 PRODUCT PORTFOLIO
15.6.3 RECENT DEVELOPMENTS
15.7 EXSCIENTIA
15.7.1 COMPANY SNAPSHOT
15.7.2 REVENUE ANALYSIS
15.7.3 PRODUCT PORTFOLIO
15.7.4 RECENT DEVELOPMENTS
15.8 ARIA PHARMACEUTICALS, INC.
15.8.1 COMPANY SNAPSHOT
15.8.2 PRODUCT PORTFOLIO
15.8.3 RECENT DEVELOPMENTS
15.9 ATOMWISE INC.
15.9.1 COMPANY SNAPSHOT
15.9.2 PRODUCT PORTFOLIO
15.9.3 RECENT DEVELOPMENTS
15.1 BENEVOLENT AI
15.10.1 COMPANY SNAPSHOT
15.10.2 REVENUE ANALYSIS
15.10.3 PRODUCT PORTFOLIO
15.10.4 RECENT DEVELOPMENTS
15.11 BIOAGE INC.,
15.11.1 COMPANY SNAPSHOT
15.11.2 PRODUCT PORTFOLIO
15.11.3 RECENT DEVELOPMENTS
15.12 CLOUD
15.12.1 COMPANY SNAPSHOT
15.12.2 PRODUCT PORTFOLIO
15.12.3 RECENT DEVELOPMENT
15.13 CYCLICA
15.13.1 COMPANY SNAPSHOT
15.13.2 PRODUCT PORTFOLIO
15.13.3 RECENT DEVELOPMENTS
15.14 DEEP GENOMICS
15.14.1 COMPANY SNAPSHOT
15.14.2 PRODUCT PORTFOLIO
15.14.3 RECENT DEVELOPMENTS
15.15 ENVISAGENICS
15.15.1 COMPANY SNAPSHOT
15.15.2 PRODUCT PORTFOLIO
15.15.3 RECENT DEVELOPMENTS
15.16 INSILICO MEDICINE
15.16.1 COMPANY SNAPSHOT
15.16.2 PRODUCT PORTFOLIO
15.16.3 RECENT DEVELOPMENTS
15.17 NUMEDII, INC.
15.17.1 COMPANY SNAPSHOT
15.17.2 PRODUCT PORTFOLIO
15.17.3 RECENT DEVELOPMENT
15.18 OWKIN INC.
15.18.1 COMPANY SNAPSHOT
15.18.2 PRODUCT PORTFOLIO
15.18.3 RECENT DEVELOPMENT
15.19 XTALPI INC.
15.19.1 COMPANY SNAPSHOT
15.19.2 PRODUCT PORTFOLIO
15.19.3 RECENT DEVELOPMENTS
16 QUESTIONNAIRE
17 RELATED REPORTS
List of Table
TABLE 1 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 2 MIDDLE EAST & AFRICA SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 3 MIDDLE EAST & AFRICA SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 4 MIDDLE EAST & AFRICA SERVICES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 5 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 6 MIDDLE EAST & AFRICA MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 7 MIDDLE EAST & AFRICA MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 8 MIDDLE EAST & AFRICA DEEP LEARNING IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 9 MIDDLE EAST & AFRICA NATURAL LANGUAGE PROCESSING (NLP) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 10 MIDDLE EAST & AFRICA OTHERS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 11 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 12 MIDDLE EAST & AFRICA SMALL MOLECULE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 13 MIDDLE EAST & AFRICA LARGE MOLECULE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 14 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 15 MIDDLE EAST & AFRICA NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 16 MIDDLE EAST & AFRICA NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 17 MIDDLE EAST & AFRICA DRUG OPTIMISATION AND RE-PURPOSING PRE-CLINICAL TESTING AND APPROVAL IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 18 MIDDLE EAST & AFRICA DRUG MONITORING IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 19 MIDDLE EAST & AFRICA AGGREGATING AND SYNTHESIZING INFORMATION IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 20 MIDDLE EAST & AFRICA DE NOVO DRUG DESIGN IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 21 MIDDLE EAST & AFRICA FINDING DRUG TARGETS OF AN OLD DRUG IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 22 MIDDLE EAST & AFRICA FORMATION & QUALIFICATION OF HYPOTHESES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 23 MIDDLE EAST & AFRICA UNDERSTANDING DISEASE MECHANISMS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 24 MIDDLE EAST & AFRICA FINDING NEW DISEASE-ASSOCIATED TARGETS AND PATHWAYS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 25 MIDDLE EAST & AFRICA OTHERS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 26 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 27 MIDDLE EAST & AFRICA IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 28 MIDDLE EAST & AFRICA IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 29 MIDDLE EAST & AFRICA NEURODEGENERATIVE DISEASES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 30 MIDDLE EAST & AFRICA CARDIOVASCULAR DISEASES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 31 MIDDLE EAST & AFRICA METABOLIC DISEASES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 32 MIDDLE EAST & AFRICA OTHERS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 33 GLOB MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 34 MIDDLE EAST & AFRICA CONTRACT RESEARCH ORGANIZATIONS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 35 MIDDLE EAST & AFRICA PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 36 MIDDLE EAST & AFRICA RESEARCH CENTRES AND ACADEMIC INSTITUTES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 37 MIDDLE EAST & AFRICA OTHERS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 38 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY COUNTRY, 2020-2029 (USD MILLION)
TABLE 39 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 40 MIDDLE EAST & AFRICA ARTIFICIAL SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 41 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 42 MIDDLE EAST & AFRICA ARTIFICIAL MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 43 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 44 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 45 MIDDLE EAST & AFRICA ARTIFICIAL NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 46 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 47 MIDDLE EAST & AFRICA ARTIFICIAL IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 48 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 49 SOUTH AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 50 SOUTH AFRICA SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 51 SOUTH AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 52 SOUTH AFRICA MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 53 SOUTH AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 54 SOUTH AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 55 SOUTH AFRICA NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 56 SOUTH AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 57 SOUTH AFRICA IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 58 SOUTH AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 59 ISRAEL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 60 ISRAEL SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 61 ISRAEL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 62 ISRAEL MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 63 ISRAEL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 64 ISRAEL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 65 ISRAEL NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 66 ISRAEL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 67 ISRAEL IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 68 ISRAEL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 69 SAUDI ARABIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 70 SAUDI ARABIA SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 71 SAUDI ARABIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 72 SAUDI ARABIA MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 73 SAUDI ARABIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 74 SAUDI ARABIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 75 SAUDI ARABIA NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 76 SAUDI ARABIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 77 SAUDI ARABIA IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 78 SAUDI ARABIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 79 U.A.E ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 80 U.A.E SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 81 U.A.E ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 82 U.A.E MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 83 U.A.E ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 84 U.A.E ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 85 U.A.E NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 86 U.A.E ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 87 U.A.E IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 88 U.A.E ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 89 EGYPT ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 90 EGYPT SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 91 EGYPT ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 92 EGYPT MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 93 EGYPT ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 94 EGYPT ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 95 EGYPT NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 96 EGYPT ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 97 EGYPT IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 98 EGYPT ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 99 REST OF MIDDLE EAST AND AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
List of Figure
FIGURE 1 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: SEGMENTATION
FIGURE 2 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: DATA TRIANGULATION
FIGURE 3 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: DROC ANALYSIS
FIGURE 4 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: MIDDLE EAST & AFRICA VS REGIONAL MARKET ANALYSIS
FIGURE 5 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: COMPANY RESEARCH ANALYSIS
FIGURE 6 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: INTERVIEW DEMOGRAPHICS
FIGURE 7 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: MARKET APPLICATION COVERAGE GRID
FIGURE 8 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: DBMR MARKET POSITION GRID
FIGURE 9 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: VENDOR SHARE ANALYSIS
FIGURE 10 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: SEGMENTATION
FIGURE 11 THE GROWING NEED TO CURB DRUG DISCOVERY COSTS AND REDUCE TIME INVOLVED IN THE DRUG DEVELOPMENT PROCESS, THE RISING ADOPTION OF CLOUD-BASED APPLICATIONS AND SERVICES, AND THE IMPENDING PATENT EXPIRY OF BLOCKBUSTER DRUGS ARE EXPECTED TO DRIVE THE GROWTH OF THE MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET IN THE FORECAST PERIOD OF 2022 TO 2029
FIGURE 12 SOFTWARE IS EXPECTED TO ACCOUNT FOR THE LARGEST SHARE OF THE MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET IN 2022 AND 2029
FIGURE 13 DRIVERS, RESTRAINTS, OPPORTUNITIES, AND CHALLENGES OF THE MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET
FIGURE 14 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY OFFERING, 2021
FIGURE 15 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY OFFERING, 2022-2029 (USD MILLION)
FIGURE 16 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY OFFERING, CAGR (2022-2029)
FIGURE 17 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY OFFERING, LIFELINE CURVE
FIGURE 18 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY TECHNOLOGY, 2021
FIGURE 19 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY TECHNOLOGY, 2022-2029 (USD MILLION)
FIGURE 20 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY TECHNOLOGY, CAGR (2022-2029)
FIGURE 21 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY TECHNOLOGY, LIFELINE CURVE
FIGURE 22 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY DRUG TYPE, 2021
FIGURE 23 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY DRUG TYPE, 2022-2029 (USD MILLION)
FIGURE 24 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY DRUG TYPE, CAGR (2022-2029)
FIGURE 25 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY DRUG TYPE, LIFELINE CURVE
FIGURE 26 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY APPLICATION, 2021
FIGURE 27 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY APPLICATION, 2020-2029 (USD MILLION)
FIGURE 28 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY APPLICATION, CAGR (2022-2029)
FIGURE 29 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY APPLICATION, LIFELINE CURVE
FIGURE 30 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY INDICATION, 2021
FIGURE 31 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY INDICATION, 2020-2029 (USD MILLION)
FIGURE 32 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY INDICATION, CAGR (2022-2029)
FIGURE 33 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY INDICATION, LIFELINE CURVE
FIGURE 34 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY END USE, 2021
FIGURE 35 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY END USE, 2022-2029 (USD MILLION)
FIGURE 36 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY END USE, CAGR (2022-2029)
FIGURE 37 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY END USE, LIFELINE CURVE
FIGURE 38 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: SNAPSHOT (2021)
FIGURE 39 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY COUNTRY (2021)
FIGURE 40 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY COUNTRY (2022 & 2029)
FIGURE 41 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY COUNTRY (2021 & 2029)
FIGURE 42 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY OFFERING (2022-2029)
FIGURE 43 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: COMPANY SHARE 2021 (%)

منهجية البحث
يتم جمع البيانات وتحليل سنة الأساس باستخدام وحدات جمع البيانات ذات أحجام العينات الكبيرة. تتضمن المرحلة الحصول على معلومات السوق أو البيانات ذات الصلة من خلال مصادر واستراتيجيات مختلفة. تتضمن فحص وتخطيط جميع البيانات المكتسبة من الماضي مسبقًا. كما تتضمن فحص التناقضات في المعلومات التي شوهدت عبر مصادر المعلومات المختلفة. يتم تحليل بيانات السوق وتقديرها باستخدام نماذج إحصائية ومتماسكة للسوق. كما أن تحليل حصة السوق وتحليل الاتجاهات الرئيسية هي عوامل النجاح الرئيسية في تقرير السوق. لمعرفة المزيد، يرجى طلب مكالمة محلل أو إرسال استفسارك.
منهجية البحث الرئيسية التي يستخدمها فريق بحث DBMR هي التثليث البيانات والتي تتضمن استخراج البيانات وتحليل تأثير متغيرات البيانات على السوق والتحقق الأولي (من قبل خبراء الصناعة). تتضمن نماذج البيانات شبكة تحديد موقف البائعين، وتحليل خط زمني للسوق، ونظرة عامة على السوق ودليل، وشبكة تحديد موقف الشركة، وتحليل براءات الاختراع، وتحليل التسعير، وتحليل حصة الشركة في السوق، ومعايير القياس، وتحليل حصة البائعين على المستوى العالمي مقابل الإقليمي. لمعرفة المزيد عن منهجية البحث، أرسل استفسارًا للتحدث إلى خبراء الصناعة لدينا.
التخصيص متاح
تعد Data Bridge Market Research رائدة في مجال البحوث التكوينية المتقدمة. ونحن نفخر بخدمة عملائنا الحاليين والجدد بالبيانات والتحليلات التي تتطابق مع هدفهم. ويمكن تخصيص التقرير ليشمل تحليل اتجاه الأسعار للعلامات التجارية المستهدفة وفهم السوق في بلدان إضافية (اطلب قائمة البلدان)، وبيانات نتائج التجارب السريرية، ومراجعة الأدبيات، وتحليل السوق المجدد وقاعدة المنتج. ويمكن تحليل تحليل السوق للمنافسين المستهدفين من التحليل القائم على التكنولوجيا إلى استراتيجيات محفظة السوق. ويمكننا إضافة عدد كبير من المنافسين الذين تحتاج إلى بيانات عنهم بالتنسيق وأسلوب البيانات الذي تبحث عنه. ويمكن لفريق المحللين لدينا أيضًا تزويدك بالبيانات في ملفات Excel الخام أو جداول البيانات المحورية (كتاب الحقائق) أو مساعدتك في إنشاء عروض تقديمية من مجموعات البيانات المتوفرة في التقرير.