نظرة عامة على صناعة معالجة اللغة الطبيعية العالمية وعلوم الحياة والرعاية الصحية وتوقعاتها حتى عام 2031 - تحليل السوق وحصة السوق

Request for TOC طلب جدول المحتويات Speak to Analyst تحدث إلى المحلل Buy Now اشتري الآن Inquire Before Buying استفسر قبل Free Sample Report تقرير عينة مجاني

نظرة عامة على صناعة معالجة اللغة الطبيعية العالمية وعلوم الحياة والرعاية الصحية وتوقعاتها حتى عام 2031 - تحليل السوق وحصة السوق

  • ICT
  • Upcoming Report
  • Aug 2024
  • Global
  • 350 الصفحات
  • عدد الجداول: 60
  • عدد الأرقام: 220

Global Natural Language Processing Nlp Healthcare Life Sciences Market

حجم السوق بالمليار دولار أمريكي

CAGR :  % Diagram

Diagram فترة التنبؤ
2024 –2031
Diagram حجم السوق (السنة الأساسية)
USD 2.11 Billion
Diagram حجم السوق (سنة التنبؤ)
USD 8.48 Billion
Diagram CAGR
%
Diagram اللاعبين الرئيسيين في الأسواق
  • 3M (U.S.)
  • Cerner Corporation (U.S.)
  • Nuance Communications Inc. (U.S.)
  • Dolby Systems Inc. (U.S.)
  • Microsoft (U.S.)

>تم تقييم سوق علوم الحياة في مجال معالجة اللغة الطبيعية العالمية (NLP) بنحو 2.11 مليار دولار أمريكي في عام 2023. ومن المتوقع أن ينمو حجم السوق بمعدل نمو سنوي مركب قدره 19٪ ليصل إلى 8.48 مليار دولار أمريكي بحلول عام 2031.

معالجة اللغة الطبيعية (NLP) في سوق الرعاية الصحية وعلوم الحياة

نظرة عامة على صناعة سوق علوم الحياة في مجال معالجة اللغة الطبيعية (NLP) العالمية

ينتج قطاع الرعاية الصحية وعلوم الحياة كمية هائلة من البيانات بما في ذلك السجلات الصحية الإلكترونية وتقارير التجارب السريرية وبيانات البحث وتقارير المرضى. وفقًا للمنتدى الاقتصادي العالمي، تولد صناعة الرعاية الصحية أكثر من 30٪ من البيانات المتولدة في جميع أنحاء العالم، ومعظمها غير مستخدم. يلعب دمج معالجة اللغة الطبيعية (NLP) في قطاع الرعاية الصحية دورًا كبيرًا في معالجة البيانات الطبية مما يؤدي إلى الابتكار والاختراعات التي يمكن أن تصبح الأساس لاكتشاف العلاج والعلاجات والأدوية التي يمكن أن تثبت أنها علاج فعال لحالات صحية متنوعة. لقد حولت معالجة اللغة الطبيعية (NLP) صناعة الرعاية الصحية وعلوم الحياة تمامًا من خلال نهجها الشامل الموجه نحو تحليل البيانات. الآن، لا توجد سجلات رعاية صحية وعلوم حياة لا يتم استخدامها مع التحليل الديناميكي لـ NLP للبيانات غير المنظمة وتحليل المشاعر والتعرف على الكيانات المسماة واكتشاف الأدوية لاستخراج رؤى قيمة تساعد بشكل كبير على تحسين مشاركة المرضى ونتيجة لذلك، يتوسع سوق علوم الحياة في مجال الرعاية الصحية العالمية باستخدام معالجة اللغة الطبيعية (NLP).  

يقدم تقرير أبحاث السوق من Data Bridge Market تفاصيل عن التطورات الأخيرة واللوائح التجارية وحصة السوق واتجاهات السوق على أساس تقسيماتها وتحليلها الإقليمي وتأثير اللاعبين في السوق وتحليل الفرص من حيث جيوب الإيرادات الناشئة ولوائح السوق وتحليل نمو السوق الاستراتيجي وحجم السوق ونمو السوق حسب الفئة ومنافذ التطبيق والهيمنة وموافقات المنتجات وإطلاق المنتجات والتوسعات الجغرافية والابتكارات التكنولوجية في السوق. للحصول على مزيد من المعلومات حول السوق، اتصل بفريق المحللين الخبراء في Data Bridge Market Research. سيساعدك فريقنا في اتخاذ قرارات سوقية مستنيرة لتحقيق نمو الأعمال.

حجم سوق معالجة اللغة الطبيعية العالمية وعلوم الحياة والرعاية الصحية

تفاصيل مقاييس تقرير سوق علوم الحياة في مجال الرعاية الصحية NLP

فترة التنبؤ

2024-2031

سنة الأساس

2023

سنة تاريخية

2022 (قابلة للتخصيص 2016-2021)

وحدة القياس

مليار دولار أمريكي

مؤشر البيانات

رؤى السوق وقيمة السوق ومعدل النمو وشرائح السوق والتغطية الجغرافية واللاعبين في السوق وسيناريو السوق والتحليل المتعمق من الخبراء وعلم الأوبئة للمرضى وتحليل خطوط الأنابيب وتحليل التسعير والإطار التنظيمي.

أدى التقارب بين معالجة اللغة الطبيعية والرعاية الصحية وعلوم الحياة إلى إحداث تطور في الطب من خلال الاستفادة من البيانات لصالح القطاع. يعمل النمو الهائل في بيانات الرعاية الصحية على تسريع الحاجة إلى حلول معالجة اللغة الطبيعية التي يمكن أن تساعد في إدارة هذا البحر من البيانات غير المنظمة لاستخراج رؤى قيمة. تساعد الابتكارات المستمرة في الذكاء الاصطناعي والتعلم الآلي في تطوير القدرات ودقة تطبيقات معالجة اللغة الطبيعية وتشجيع تبني تقنيات معالجة اللغة الطبيعية لتمكين البحث والتطوير في مجال الرعاية الصحية. يعد الترابط بين معالجة اللغة الطبيعية والرعاية الصحية نعمة لمقدمي خدمات الرعاية الصحية الذين يضبطون رعاية المرضى وخدمات الرعاية الصحية لتحقيق نمو السوق. قامت Databridge Market Research بتحليل السوق بشكل شامل وكشفت أن أسواق علوم الحياة في مجال معالجة اللغة الطبيعية العالمية تنمو بمعدل نمو سنوي مركب قدره 3.64٪. تقدر قيمة السوق بنحو 2.11 مليار دولار أمريكي في عام 2023 ومن المتوقع أن تنمو إلى 8.48 مليار دولار أمريكي بحلول عام 2031.

ديناميكيات سوق علوم الحياة في مجال الرعاية الصحية والبرمجة اللغوية العصبية

محركات نمو سوق علوم الحياة في مجال الرعاية الصحية باستخدام البرمجة اللغوية العصبية

تنظيم السجلات الصحية الإلكترونية لمزيد من التحليل     

إن السجلات الصحية الإلكترونية التي تستخدمها مؤسسات الرعاية الصحية تولد كميات هائلة من البيانات المتعلقة بالمرضى والتي يصبح من الصعب هيكلتها وتخزينها وتحليلها. وعادة ما تتضمن هذه السجلات الإلكترونية التقارير الطبية وتاريخ المرضى وأنواع أخرى من البيانات. ولا يعد تنظيم هذه البيانات وفحصها أمرًا مهمًا فحسب، بل إن سهولة الوصول إلى هذه البيانات أمر بالغ الأهمية أيضًا. وتعتبر تقنيات معالجة اللغة الطبيعية التي تشمل التوثيق السريري والتعرف على الكلام وأبحاث استخراج البيانات ودعم القرار السريري فعالة للغاية في استخراج البيانات الطبية وفحصها وضمان توفرها حسب الاستخدام. ومن خلال الاستفادة من معالجة اللغة الطبيعية، يمكن لمقدمي الرعاية الصحية تحليل وتفسير هذه المجموعة الواسعة من البيانات بشكل أكثر فعالية، مما يؤدي إلى تحسين عملية اتخاذ القرار السريري والرعاية الشخصية للمرضى وكفاءة تشغيلية أكبر، وبالتالي تغذية نمو السوق.

التحليل التنبئي القائم على الذكاء الاصطناعي والتعلم الآلي

إن معالجة اللغة الطبيعية (NLP) هي قسم فرعي من الذكاء الاصطناعي وهي مجهزة بنماذج إحصائية وتحليلية تلعب دورًا في تحديد الاتجاهات والأنماط. عندما يتم تغذية معالجة اللغة الطبيعية (NLP) في الرعاية الصحية ببيانات معقدة، فإنها تقوم بهيكلتها لإجراء تحليل شامل لسجلات المرضى. بعبارة أخرى، تقوم بإجراء تحليل تنبؤي على البيانات المتعلقة بالمريض والتي تظهر الظروف الصحية الحالية ومستوى التأثير على الجسم بالإضافة إلى المساعدة في توقع الأمراض التي قد يكون المريض عرضة لها. تسمح هذه التقنيات باستخراج رؤى مفيدة وتحديد الأنماط والتنبؤ بالنتائج من مجموعات بيانات كبيرة جدًا لاتخاذ قرارات سريرية أكثر استنارة ونتائج أفضل للمرضى. إن استنتاج هذا التحليل التنبئي هو تحسين رعاية المرضى وتدابير الوقاية المتقدمة لمنع الحالة الصحية المتوقعة. يعد التحليل التنبئي من خلال معالجة اللغة الطبيعية (NLP) مساهمًا رئيسيًا في تحسين خدمات رعاية المرضى وتعزيز نمو السوق.

أتمتة سجلات المرضى والتوثيق يقلل من تكاليف الرعاية الصحية

إن التوثيق السريري الآلي، المدعوم بمعالجة اللغة الطبيعية (NLP)، يبسط إدارة سجلات المرضى من خلال تحويل المعلومات المنطوقة أو المكتوبة إلى بيانات منظمة وقابلة للتنفيذ. تعمل هذه الأتمتة على تقليل العبء على المتخصصين في الرعاية الصحية، وتقليل أخطاء الإدخال اليدوي، وضمان تسجيل معلومات المريض بدقة وشاملة. تعد تقنية الأتمتة هذه طريقة فعالة من حيث التكلفة، مما يسهل على المتخصصين في الرعاية الصحية قضاء المزيد من الوقت في رعاية المرضى بدلاً من الإدارة، مما يؤدي إلى تحسين الدقة وبالتالي الكفاءة العامة في حفظ السجلات الطبية. مع أتمتة هذه المهام الشاقة، يستمتع المتخصصون في الرعاية الصحية بكفاءة التكلفة مع تحسين الجودة الشاملة لرعاية المرضى. تمكن الأتمتة أيضًا من توحيد السجلات الصحية من خلال جمع سجل المريض بالكامل المخزن في قاعدة بيانات الأطباء الآخرين أو مراكز الرعاية الصحية. إن تحول الرعاية الصحية إلى فعالة من حيث التكلفة بسبب معالجة اللغة الطبيعية هو حافز لنمو علوم الحياة في مجال الرعاية الصحية العالمية.   

فرص نمو سوق علوم الحياة في مجال الرعاية الصحية باستخدام البرمجة اللغوية العصبية

خطة علاج مخصصة

تلعب البرمجة اللغوية العصبية دورًا رئيسيًا في إعداد خطة علاج فردية ومُركزة. قدرة البرمجة اللغوية العصبية على استخراج وتوحيد بيانات المرضى من مصادر مختلفة مثل السجلات الصحية الإلكترونية والملاحظات السريرية والتاريخ الطبي، مما يتيح معالجة وتحديد الاحتياجات الخاصة للمرضى والعوامل الوراثية والحالات الصحية بسهولة. يساعد هذا مقدمي الرعاية الصحية على إعداد خطة علاج تناسب احتياجات المرضى. يعد وضع خطة علاج شخصية فرصة للأطباء لإنشاء مسار العلاج الأكثر فعالية لمرضاهم وبالتالي توسيع قاعدة مرضاهم. على سبيل المثال، يمكن للبرمجة اللغوية العصبية تسليط الضوء على الأنماط في تاريخ المريض حتى يتمكن المرء من تحديد الأدوية الأكثر احتمالية لتكون فعالة أو حتى تحديد الآثار الجانبية المحتملة في حالة مماثلة لحالات أخرى. على هذا النحو، تدعم البرمجة اللغوية العصبية الطب الدقيق، حيث ستكون التدخلات أكثر تركيزًا وفعالية، وبالتالي تحسين كفاءة العلاج ونتائج المريض.

دمج إنترنت الأشياء في الأجهزة القابلة للارتداء

تتيح الأجهزة القابلة للارتداء المزودة بتقنية معالجة اللغة الطبيعية المدعومة بإنترنت الأشياء التقاط بيانات المرضى في الوقت الفعلي. كما تساعد في مراقبة صحة المرضى عن بُعد طوال اليوم وتسمح لمهنيي الرعاية الصحية بتسجيل أي مضاعفات أو اختلافات حتى يتمكنوا من التصرف على الفور لإعداد خطة عمل لمنع أي تعقيد من هذا القبيل في المستقبل.

التعاون مع شركات الأدوية والتكنولوجيا الحيوية    

إن التعاون مع شركات الأدوية والتكنولوجيا الحيوية لدمج معالجة اللغة الطبيعية (NLP) في عمليات اكتشاف الأدوية وإدارة التجارب السريرية واليقظة الدوائية يعزز الكفاءة ويسرع الابتكار في علوم الحياة. تعمل معالجة اللغة الطبيعية على تعزيز كفاءة التجارب السريرية من خلال أتمتة استخراج البيانات من السجلات الطبية وتقارير المرضى، مما يسهل عملية التوظيف والتحليل السريع لبيانات التجارب. 

تحديات نمو حجم سوق علوم الحياة في مجال الرعاية الصحية في البرمجة اللغوية العصبية

عادةً ما يتم تزويد برامج معالجة اللغة الطبيعية في مجال الرعاية الصحية والعلوم الصحية بمجموعة محددة من المصطلحات التي قد لا تنطبق على أي أمر آخر. ونظرًا لأن اللغة البشرية تتطور باستمرار، فقد تؤدي المجموعة المحددة مسبقًا من المصطلحات إلى هيكلة البيانات بشكل غير دقيق. ويحدث هذا عادةً عندما يحتوي برنامج معالجة اللغة الطبيعية على مجموعة مدمجة من المصطلحات التي قد لا تتطابق مع البيانات غير المنظمة التي يتم فحصها. ومن السهل التغلب على هذا التحدي بمستوى معين من التدخل البشري.

إن معالجة اللغة الطبيعية قادرة على تنظيم وتصنيف البيانات غير المنظمة. ومع ذلك، قد تصبح الأداة أقل كفاءة في مواجهة تعقيد اللغة البشرية. وقد لا تتمكن من التعامل مع اللغة المعقدة واللهجة ونقاط المرجع. ونتيجة لهذا، يزيد هذا من احتمالات النتائج الإيجابية والسلبية الخاطئة.  

قيود نمو حجم سوق علوم الحياة في مجال الرعاية الصحية في البرمجة اللغوية العصبية

مخاوف بشأن خصوصية البيانات وأمنها

في تطبيق حلول معالجة اللغة الطبيعية، فإن معالجة المعلومات الحساسة للمرضى ستثير مخاوف جذرية بشأن قوانين الخصوصية وانتهاكات أمن البيانات. وفي حين يستكشف مقدمو الرعاية الصحية بالفعل كل فرصة لتطبيق تقنيات معالجة اللغة الطبيعية على أكمل وجه، فسوف يتعين عليهم الخوض في قوانين حماية البيانات الصارمة بموجب قانون التأمين الصحي المحمول والمساءلة في الولايات المتحدة واللائحة العامة لحماية البيانات في أوروبا - وكلاهما تم سنهما لغرض الحفاظ على سرية المرضى والحد من الوصول غير المصرح به المحتمل إلى المعلومات الصحية الشخصية. ولتحقيق كل هذا، يجب تمكين أنظمة معالجة اللغة الطبيعية بشكل كامل من حيث الأمان. ويجب ضمان تلبية هذا المطلب من خلال تطبيق أساليب قوية لتشفير البيانات أثناء التخزين وأثناء النقل، وضوابط وصول صارمة للغاية تحد من وصول البيانات للمستخدمين المصرح لهم فقط، وتقنيات إخفاء الهوية للمساعدة في الحماية من التعرض غير المرغوب فيه لهوية المريض. ويمكن أن يضمن تجميع بروتوكولات الأمان هذه

تعقيد تكامل أنظمة معالجة اللغة الطبيعية  

إن دمج أنظمة معالجة اللغة الطبيعية (NLP) مع البنية التحتية الحالية لتكنولوجيا المعلومات في مجال الرعاية الصحية، بما في ذلك السجلات الطبية الإلكترونية والأنظمة السريرية، قد يكون معقدًا ويستغرق وقتًا طويلاً. تواجه مؤسسات الرعاية الصحية تحديات مثل مشكلات التوافق وتوحيد البيانات والتوافق مع الأنظمة القديمة عند نشر حلول معالجة اللغة الطبيعية. تتطلب عملية التكامل التخطيط الدقيق والتخصيص والتنسيق مع فرق تكنولوجيا المعلومات لضمان الاتصال السلس والوظائف عبر منصات مختلفة. علاوة على ذلك، فإن تدريب موظفي الرعاية الصحية على الاستفادة الفعالة من أدوات معالجة اللغة الطبيعية وتفسير الأفكار الناتجة عنها يفرض تحديات تنفيذ إضافية.

نطاق واتجاهات سوق علوم الحياة في مجال الرعاية الصحية والبرمجة اللغوية العصبية

نظرة عامة على تقسيمات سوق علوم الحياة في مجال الرعاية الصحية باستخدام البرمجة اللغوية العصبية

نوع المقاطع

الأقسام الفرعية

عنصر

الحلول والخدمات المستقلة

نوع البرمجة اللغوية العصبية

معالجة اللغة الطبيعية القائمة على القواعد، معالجة اللغة الطبيعية الإحصائية، معالجة اللغة الطبيعية الهجينة

وضع النشر

محليًا، سحابيًا

حجم المنظمة

الشركات الكبيرة والشركات الصغيرة والمتوسطة

طلب

الاستجابة الصوتية التفاعلية (IVR) ، التعرف على الأنماط والصور، الترميز التلقائي، التصنيف والتصنيف، تحليلات النصوص والكلام، وغيرها

المستخدم النهائي

البرمجة اللغوية العصبية للأطباء، والبرمجة اللغوية العصبية للباحثين، والبرمجة اللغوية العصبية للمرضى، والبرمجة اللغوية العصبية للعاملين في المجال السريري

 رؤية رئيسية

  • في السنوات الأخيرة، ومع ظهور إمكانات الذكاء الاصطناعي كعامل تغيير في مجال الرعاية الصحية، من خلال توظيف تقنيات التعلم الآلي ومعالجة اللغة الطبيعية في المعالجة الفعالة لحجم متزايد من البيانات، تم تعزيز أحد أكثر التطبيقات إثارة للإعجاب والمعروفة باسم الترميز السريري الآلي الذي يعمل على تبسيط إدارة السجلات السريرية في المستشفيات ومراكز البحث الطبي.
  • لقد كانت هناك زيادة كبيرة في المقالات حول الترميز السريري الآلي باستخدام التعلم العميق (كنهج رئيسي حالي للذكاء الاصطناعي) في السنوات القليلة الماضية، كما تمت مراجعته في الدراسات الاستقصائية الأخيرة.
  • ورغم معالجة المخاوف والإشارة إلى سلامة وفعالية برامج الدردشة الآلية، فإن الجوانب الإنسانية للرعاية الصحية لا يمكن استبدالها. وبهذه الطريقة، لا يمكن لبرامج الدردشة الآلية أن تصبح إلا جزءًا لا يتجزأ من الممارسة السريرية للعمل جنبًا إلى جنب مع المتخصصين في الرعاية الصحية، مما يقلل التكلفة، ويعزز كفاءة سير العمل، وبالتالي تحسين النتائج لتحقيق نتائج أفضل.

تحليل إقليمي لسوق علوم الحياة في مجال الرعاية الصحية باستخدام البرمجة اللغوية العصبية – اتجاهات السوق

نظرة عامة إقليمية على سوق علوم الحياة في مجال الرعاية الصحية باستخدام البرمجة اللغوية العصبية

المناطق

بلدان

أوروبا

ألمانيا، فرنسا، المملكة المتحدة، هولندا، سويسرا، بلجيكا، روسيا، إيطاليا، إسبانيا، تركيا، بقية أوروبا

منطقة آسيا والمحيط الهادئ

الصين، اليابان، الهند، كوريا الجنوبية، سنغافورة، ماليزيا، أستراليا، تايلاند، إندونيسيا، الفلبين، بقية دول آسيا والمحيط الهادئ

أمريكا الشمالية

الولايات المتحدة وكندا والمكسيك

الشرق الأوسط وأفريقيا

المملكة العربية السعودية، الإمارات العربية المتحدة، جنوب أفريقيا، مصر، إسرائيل، بقية الشرق الأوسط وأفريقيا

أمريكا الجنوبية

البرازيل والأرجنتين وبقية دول أمريكا الجنوبية

رؤى رئيسية

  • ومن المتوقع أن تهيمن أمريكا الشمالية على السوق بسبب الطلب المتزايد على حلول معالجة اللغة الطبيعية والاستثمارات الكبيرة في الروبوتات ومبادرات البحث والتطوير المتعلقة بمعالجة اللغة الطبيعية. وتسهل البنية التحتية المتقدمة للرعاية الصحية في المنطقة والوجود القوي لشركات التكنولوجيا العملاقة الرئيسية التبني السريع لتقنيات معالجة اللغة الطبيعية عبر تطبيقات مختلفة، بما في ذلك التوثيق السريري وتحليل تفاعل المرضى وتحليل البيانات. 
  • من المتوقع أن تشهد منطقة آسيا والمحيط الهادئ نموًا كبيرًا بسبب التبني الواسع النطاق للتقنيات المتقدمة التي تهدف إلى تحسين العمليات التجارية. تعد زيادة الاستثمارات في البنية التحتية لتكنولوجيا المعلومات في مجال الرعاية الصحية وزيادة الوعي بفوائد البرمجة اللغوية العصبية في تحسين عمليات اتخاذ القرار السريري وإشراك المرضى من العوامل الرئيسية التي تدفع هذا النمو.
  • تشارك المنظمة الهولندية للبحث العلمي (NWO) في مشاريع تطبيق معالجة اللغة الطبيعية لتحليل البيانات العلمية المستمدة من الدراسات البحثية الطبية الحيوية. والهدف هو تطوير علاجات جديدة وتحسين فهم بيولوجيا الأمراض.
  • يركز مشروع European Health Data Space (EHDS) الممول من الاتحاد الأوروبي على تطوير أدوات معالجة اللغة الطبيعية القادرة على التعامل مع لغات أوروبية متعددة. تهدف المبادرة إلى إنشاء حلول معالجة اللغة الطبيعية الموحدة القادرة على معالجة البيانات الصحية عبر لغات ولهجات مختلفة في جميع أنحاء أوروبا.
  • تركز NHS Digital في المملكة المتحدة على دمج تقنيات معالجة اللغة الطبيعية في أنظمة السجلات الطبية الإلكترونية لتعزيز التوثيق السريري واسترجاع المعلومات. ويحاول هذا التكامل تحقيق مستوى معزز من دقة البيانات للمرضى، وهو ما يسمح في معنى آخر باتخاذ القرارات السريرية الصحيحة نظرًا لحقيقة أنه يعمل على أتمتة عمليات استخراج البيانات وتحليلها من التسجيلات الطبية.
  • في جنوب أفريقيا، تقوم شركة Data Science Africa بتطوير نماذج معالجة اللغة الطبيعية المصممة لدعم عدد من اللغات المحلية، من الأفريكانية والزولو إلى لغات أخرى، لتوضع في وضع يسمح لها بتلبية متطلبات التعدد اللغوي داخل نظام الرعاية الصحية القائم على المستوى الإقليمي.

أبرز اللاعبين في سوق علوم الحياة في مجال الرعاية الصحية والبرمجة اللغوية العصبية

  • 3M (الولايات المتحدة)
  • شركة سيرنر (الولايات المتحدة)
  • شركة نيوانس للاتصالات (الولايات المتحدة)
  • شركة دولبي سيستمز (الولايات المتحدة)
  • مايكروسوفت (الولايات المتحدة)
  • آي بي إم (الولايات المتحدة)
  • شركة جوجل المحدودة (Alphabet Inc.) (الولايات المتحدة)
  • شركة أمازون لخدمات الويب (الولايات المتحدة)
  • شركة أبيكسيو (الولايات المتحدة)
  • أفيربيس (ألمانيا)
  • كلينيثينك (الولايات المتحدة)
  • ليكساليتيكس (الولايات المتحدة)
  • علم السرد (الولايات المتحدة)
  • مختبرات جون سنو (الولايات المتحدة)
  • BenevolentAI (المملكة المتحدة)

التطورات الأخيرة في سوق علوم الحياة في مجال الرعاية الصحية والبرمجة اللغوية العصبية

  • في فبراير 2024، تعاونت Persistent Systems مع Microsoft لإطلاق حل PHM جديد مدعوم بالذكاء الاصطناعي التوليدي. تم تطوير هذا الحل المتقدم لدعم نماذج الرعاية القائمة على القيمة، ويستخدم SDOH لقياس احتياجات المرضى غير السريرية. ونتيجة لذلك، فإنه يعزز دقة التحليلات التنبؤية في الإنفاق على الرعاية الصحية في العديد من الحالات السريرية.
  • في يونيو 2023، أكملت شركة Apixio، الرائدة في حلول الذكاء الاصطناعي للرعاية الصحية القائمة على القيمة، اندماجها مع ClaimLogiq، وهي شركة تكنولوجيا معروفة بخبرتها في تحسين دقة مطالبات الدفع المسبق لخطط الرعاية الصحية. ستحمل الكيان الجديد اسم Apixio وستصبح على الفور واحدة من أكبر اللاعبين المهيمنين في مجال بيانات وتحليلات الرعاية الصحية. يجمع الاندماج الاستراتيجي بين الذكاء الاصطناعي المتقدم لشركة Apixio ودقة ClaimLogiq في معالجة المطالبات، مما يخلق منصة قوية لتقديم رؤى وحلول شاملة. تتطلع شركة Apixio الجديدة إلى إحداث ثورة في إدارة الرعاية الصحية من خلال تحسين دقة البيانات، وتحقيق الأمثلية في التنبؤ بالتكاليف، ودفع استراتيجيات رعاية أكثر فعالية قائمة على القيمة - وهو معيار جديد في صناعة تحليلات الرعاية الصحية.

يقدم لك تقرير السوق الصادر عن DBMR حول سوق معالجة اللغة الطبيعية وعلوم الحياة في الرعاية الصحية رؤى قيمة يمكن أن تساهم في اتخاذ العديد من القرارات التجارية المهمة. بناءً على تقاريرنا وخبرتنا البحثية، يمكنك إنشاء استراتيجيات نمو واقعية لشركتك.   


SKU-

احصل على إمكانية الوصول عبر الإنترنت إلى التقرير الخاص بأول سحابة استخبارات سوقية في العالم

  • لوحة معلومات تحليل البيانات التفاعلية
  • لوحة معلومات تحليل الشركة للفرص ذات إمكانات النمو العالية
  • إمكانية وصول محلل الأبحاث للتخصيص والاستعلامات
  • تحليل المنافسين باستخدام لوحة معلومات تفاعلية
  • آخر الأخبار والتحديثات وتحليل الاتجاهات
  • استغل قوة تحليل المعايير لتتبع المنافسين بشكل شامل
طلب التجريبي

منهجية البحث

يتم جمع البيانات وتحليل سنة الأساس باستخدام وحدات جمع البيانات ذات أحجام العينات الكبيرة. تتضمن المرحلة الحصول على معلومات السوق أو البيانات ذات الصلة من خلال مصادر واستراتيجيات مختلفة. تتضمن فحص وتخطيط جميع البيانات المكتسبة من الماضي مسبقًا. كما تتضمن فحص التناقضات في المعلومات التي شوهدت عبر مصادر المعلومات المختلفة. يتم تحليل بيانات السوق وتقديرها باستخدام نماذج إحصائية ومتماسكة للسوق. كما أن تحليل حصة السوق وتحليل الاتجاهات الرئيسية هي عوامل النجاح الرئيسية في تقرير السوق. لمعرفة المزيد، يرجى طلب مكالمة محلل أو إرسال استفسارك.

منهجية البحث الرئيسية التي يستخدمها فريق بحث DBMR هي التثليث البيانات والتي تتضمن استخراج البيانات وتحليل تأثير متغيرات البيانات على السوق والتحقق الأولي (من قبل خبراء الصناعة). تتضمن نماذج البيانات شبكة تحديد موقف البائعين، وتحليل خط زمني للسوق، ونظرة عامة على السوق ودليل، وشبكة تحديد موقف الشركة، وتحليل براءات الاختراع، وتحليل التسعير، وتحليل حصة الشركة في السوق، ومعايير القياس، وتحليل حصة البائعين على المستوى العالمي مقابل الإقليمي. لمعرفة المزيد عن منهجية البحث، أرسل استفسارًا للتحدث إلى خبراء الصناعة لدينا.

التخصيص متاح

تعد Data Bridge Market Research رائدة في مجال البحوث التكوينية المتقدمة. ونحن نفخر بخدمة عملائنا الحاليين والجدد بالبيانات والتحليلات التي تتطابق مع هدفهم. ويمكن تخصيص التقرير ليشمل تحليل اتجاه الأسعار للعلامات التجارية المستهدفة وفهم السوق في بلدان إضافية (اطلب قائمة البلدان)، وبيانات نتائج التجارب السريرية، ومراجعة الأدبيات، وتحليل السوق المجدد وقاعدة المنتج. ويمكن تحليل تحليل السوق للمنافسين المستهدفين من التحليل القائم على التكنولوجيا إلى استراتيجيات محفظة السوق. ويمكننا إضافة عدد كبير من المنافسين الذين تحتاج إلى بيانات عنهم بالتنسيق وأسلوب البيانات الذي تبحث عنه. ويمكن لفريق المحللين لدينا أيضًا تزويدك بالبيانات في ملفات Excel الخام أو جداول البيانات المحورية (كتاب الحقائق) أو مساعدتك في إنشاء عروض تقديمية من مجموعات البيانات المتوفرة في التقرير.

Frequently Asked Questions

The Global Natural Language Processing NLP Healthcare Life Sciences Markets growing at a CAGR 3.64% and is expected to reach 2.51 in 2024.
The Global Natural Language Processing NLP Healthcare Life Sciences Markets growing CAGR of 3.64% to reach USD 8.48 billion by 2031.
Key drivers Adoption of Electronic Health Records (EHRs) & Advancements in Artificial Intelligence (AI) and Machine Learning (ML)
APAC, particularly countries like China and India, is experiencing significant industrial growth and urbanization.
Our TRIPOD analysis involves comprehensive primary as well as secondary research to gather the data that is analyzed using credible data analysis methodologies involving Data Forecast Modelling, Porter’s Five Force Model, Demand Supply Chain Analysis, and Value Change Analysis.