السوق العالمية لمنتجات MLOPs – اتجاهات الصناعة والتوقعات حتى عام 2031

Request for TOC طلب جدول المحتويات Speak to Analyst تحدث إلى المحلل Buy Now اشتري الآن Inquire Before Buying استفسر قبل Free Sample Report تقرير عينة مجاني

السوق العالمية لمنتجات MLOPs – اتجاهات الصناعة والتوقعات حتى عام 2031

  • ICT
  • Upcoming Report
  • Apr 2024
  • Global
  • 350 الصفحات
  • عدد الجداول: 220
  • عدد الأرقام: 60

Global Mlops Market

حجم السوق بالمليار دولار أمريكي

CAGR :  % Diagram

Diagram فترة التنبؤ
2024 –2031
Diagram حجم السوق (السنة الأساسية)
USD 7.62 Billion
Diagram حجم السوق (سنة التنبؤ)
USD 11.69 Billion
Diagram CAGR
%
Diagram Major Markets Players
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

>السوق العالمية لـMLOPs، حسب المكون (المنصة، الخدمة)، وضع النشر (في الموقع، السحابة، الهجين)، حجم المنظمة (الشركات الكبيرة، الشركات الصغيرة والمتوسطة الحجم (SMEs))، القطاعات الصناعية (الخدمات المالية (BFSI)، التصنيع، تكنولوجيا المعلومات (IT) والاتصالات، التجزئة والتجارة الإلكترونية ، الرعاية الصحية، أخرى) - اتجاهات الصناعة والتوقعات حتى عام 2031.

تحليل حجم سوق MLOPs

تشير عمليات التعلم الآلي (MLOps) إلى مجموعة الممارسات والأدوات المستخدمة لتبسيط وأتمتة نشر ومراقبة وإدارة نماذج التعلم الآلي في بيئات الإنتاج. تهدف عمليات التعلم الآلي إلى سد الفجوة بين تطوير ونشر نماذج التعلم الآلي من خلال ضمان الاتساق والموثوقية وقابلية التوسع طوال دورة حياة التعلم الآلي بالكامل.

تحلل شركة Data Bridge Market Research أن سوق MLOPs العالمي الذي بلغ 7.62 مليار دولار أمريكي في عام 2023، من المتوقع أن يصل إلى 11.69 مليار دولار أمريكي بحلول عام 2031، ومن المتوقع أن يخضع لمعدل نمو سنوي مركب بنسبة 5.5٪ خلال الفترة المتوقعة من 2024 إلى 2031. بالإضافة إلى رؤى السوق مثل القيمة السوقية ومعدل النمو وشرائح السوق والتغطية الجغرافية واللاعبين في السوق وسيناريو السوق، يتضمن تقرير السوق الذي أعده فريق Data Bridge Market Research تحليلًا متعمقًا من الخبراء وتحليل الاستيراد / التصدير وتحليل التسعير وتحليل استهلاك الإنتاج وتحليل الهاون.

نطاق التقرير وتقسيم السوق

تقرير القياس

تفاصيل

فترة التنبؤ

2024 إلى 2031

سنة الأساس

2023

سنوات تاريخية

2022 (مخصصة من 2016 إلى 2021)

وحدات كمية

الإيرادات بالمليارات من الدولارات الأمريكية، الأحجام بالوحدات، التسعير بالدولار الأمريكي

القطاعات المغطاة

المكون (المنصة والخدمة)، وضع النشر (محليًا، سحابيًا، هجينًا)، حجم المؤسسة (المؤسسات الكبيرة، المؤسسات الصغيرة والمتوسطة الحجم (SMEs))، القطاعات الصناعية (الخدمات المالية (BFSI)، التصنيع، تكنولوجيا المعلومات (IT) والاتصالات، التجزئة والتجارة الإلكترونية، الرعاية الصحية، أخرى)

الدول المغطاة

الولايات المتحدة الأمريكية، كندا، المكسيك، البرازيل، الأرجنتين، بقية دول أمريكا الجنوبية، ألمانيا، إيطاليا، المملكة المتحدة، فرنسا، إسبانيا، هولندا، بلجيكا، سويسرا، تركيا، روسيا، بقية دول أوروبا، اليابان، الصين، الهند، كوريا الجنوبية، أستراليا، سنغافورة، ماليزيا، تايلاند، إندونيسيا، الفلبين، بقية دول آسيا والمحيط الهادئ، المملكة العربية السعودية، الإمارات العربية المتحدة، جنوب أفريقيا، مصر، إسرائيل، بقية دول الشرق الأوسط وأفريقيا

الجهات الفاعلة في السوق المشمولة

Databricks (الولايات المتحدة)، Domino Data Lab (الولايات المتحدة)، Kubeflow (من Google) (الولايات المتحدة)، Amazon SageMaker (الولايات المتحدة)، Paperspace Gradient (الولايات المتحدة)، Fiddler AI (الولايات المتحدة)، MLflow (من Databricks) (الولايات المتحدة)، Valohai (فنلندا)، Pachyderm (الولايات المتحدة)، ZenML (ألمانيا)

فرص السوق

  • الطلب المتزايد على الذكاء الاصطناعي والتعلم الآلي
  • التركيز المتزايد على ديمقراطية عمليات MLOps

تعريف السوق

يشتمل MLOps على مجموعة من الحلول والخدمات التي تعمل على تبسيط دورة حياة التعلم الآلي بالكامل، من تطوير النموذج والتدريب عليه إلى النشر والمراقبة والإدارة. تعمل أدوات MLOps هذه على سد الفجوة بين علم البيانات والإنتاج، مما يضمن سير العمل الفعّال، وتحسين أداء النموذج، والتكامل السلس لنماذج التعلم الآلي في التطبيقات الواقعية عبر مختلف الصناعات.

ديناميكيات سوق MLOPs

السائقين

  • الطلب المتزايد على تحسين حوكمة النماذج وإمكانية تفسيرها

إن الطلب المتزايد على تحسين حوكمة النموذج والقدرة على التفسير هو محرك مهم يدفع سوق عمليات التعلم الآلي العالمية إلى الأمام. ومع قيام المؤسسات بشكل متزايد بدمج نماذج التعلم الآلي في عملياتها، هناك تركيز متزايد على ضمان موثوقية وشفافية ومساءلة هذه النماذج. تتضمن حوكمة النموذج المحسنة وضع سياسات وضوابط صارمة لإدارة دورة حياة نماذج التعلم الآلي بالكامل، ومعالجة جوانب مثل التحكم في الإصدار والامتثال وإدارة المخاطر. بالإضافة إلى ذلك، فإن الحاجة إلى تحسين القدرة على التفسير تدفع تطوير الأدوات والتقنيات لتفسير قرارات النموذج، وتزويد أصحاب المصلحة برؤى حول سلوك النموذج وتمكين اتخاذ القرارات المستنيرة. يؤكد هذا التركيز على الحوكمة والقدرة على التفسير على الدور الحاسم الذي تلعبه حلول عمليات التعلم الآلي في تعزيز الثقة والامتثال والموثوقية داخل عمليات نشر التعلم الآلي، وبالتالي تغذية نمو السوق.

  • ارتفاع معدلات تبني الحوسبة السحابية وإمكانية التوسع فيها

يمثل التبني المتزايد للحوسبة السحابية والسعي إلى التوسع محركات محورية تدفع سوق عمليات التعلم الآلي العالمية (MLOps). ومع استفادة المؤسسات بشكل متزايد من منصات السحابة لاستضافة البنية الأساسية للتعلم الآلي، تنشأ حاجة ملحة إلى حلول MLOps القادرة على التكامل بسلاسة مع بيئات السحابة وتسهيل نشر وإدارة النماذج القابلة للتطوير. توفر خدمات MLOps المستندة إلى السحابة مرونة لا مثيل لها، مما يمكن الشركات من توسيع نطاق عمليات التعلم الآلي بسرعة استجابة للطلب المتقلب مع تبسيط التعاون والتحكم في الإصدارات وتحسين الموارد. ونتيجة لذلك، يؤكد التقارب بين متطلبات التبني السحابي المتزايد وتوسعة النطاق على الدور الذي لا غنى عنه لحلول MLOps في تنظيم تدفقات عمل التعلم الآلي الفعالة والمرنة والقابلة للتطوير على نطاق عالمي.

فرص

  • التكامل مع التقنيات الناشئة

Integration with emerging technologies presents a significant opportunity for the global MLOps market. As new technologies such as artificial intelligence (AI), edge computing, Internet of Things (IoT), and blockchain continue to evolve, there arises a complementary need for advanced MLOps solutions that can seamlessly integrate with these emerging technologies. Leveraging MLOps tools and practices, organizations can enhance the efficiency, reliability, and scalability of their AI and machine learning initiatives across diverse domains. Integration with emerging technologies enables MLOps platforms to address complex use cases, such as real-time analytics, predictive maintenance, autonomous systems, and personalized user experiences, thereby unlocking new avenues for innovation and competitive differentiation in the market.

  • Rising Focus on SMEs and Individual Developers

The growing focus on small and medium enterprises (SMEs) and individual developers presents a significant opportunity for the Global MLOps Market. As the adoption of machine learning and AI expands beyond large enterprises, SMEs and individual developers are increasingly seeking accessible and cost-effective MLOps solutions tailored to their specific needs and resource constraints. Catering to this growing segment of the market, MLOps providers into a vast pool of potential customers eager to leverage machine learning capabilities for enhancing their products, services, and operations. Moreover, empowering SMEs and individual developers with user-friendly MLOps platforms can democratize access to advanced analytics and automation, fostering innovation and driving broader adoption of machine learning technologies across diverse industries and applications.

Restraints/Challenges

  • Rising Data Security Risks

The escalation of data security risks poses a substantial challenge for the global MLOPs market. With the proliferation of sensitive data utilized in machine learning operations, including personally identifiable information and proprietary business data, the potential for data breaches, unauthorized access, and malicious attacks becomes increasingly pronounced. Ensuring the confidentiality, integrity, and availability of data throughout the MLOps lifecycle, from training to deployment and beyond, requires robust security measures and adherence to stringent compliance standards. However, the complexity of MLOps workflows, coupled with the distributed nature of data processing and storage, complicates security efforts and heightens vulnerability to cyber threats.

  • Complexity of MLOps Tools

The complexity associated with MLOps tools emerges as a significant challenge for the Global MLOps Market. While these tools offer advanced capabilities for managing and deploying machine learning models, their intricate nature often presents barriers to adoption, particularly for organizations lacking specialized expertise or resources. Complex MLOps tools may require extensive training and technical proficiency to effectively navigate, leading to longer implementation times, higher costs, and increased risk of errors. Additionally, the rapid pace of innovation in the MLOps space further compounds this challenge, as organizations struggle to keep pace with evolving technologies and best practices.

This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, the impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market contact the Data Bridge Market Research for an Analyst Brief, our team will help you make an informed market decision to achieve market growth.

Recent Developments

  • In May 2021, Google Cloud launched Vertex AI, a managed machine learning platform, integrating various services for building, training, and deploying machine learning models, simplifying the AI development lifecycle. This initiative aimed to streamline model development and deployment processes, enabling organizations to accelerate AI adoption and achieve business objectives efficiently
  • In September 2019, DataRobot launched its MLOps solution after acquiring ParallelM, integrating model management and monitoring capabilities for centralized deployment, monitoring, and governance of machine learning models across enterprises, ultimately enhancing AI deployment efficiency. This initiative aimed to address the challenges faced by organizations in deriving measurable value from AI projects by providing a comprehensive solution for automating and managing the entire machine learning lifecycle

Global MLOPs Market Scope

The market is segmented on the basis of component, deployment mode , organization size, and industry verticals. The growth amongst these segments will help you analyze meager growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.

Component

  • Platform
  • Service

Deployment Mode

  • On Premise
  • Cloud
  • Hybrid

Organization Size

  • Large Enterprises
  • Small and Medium-sized Enterprises (SMEs)

Industry Verticals

  • Financial Services (BFSI)
  • Manufacturing
  • Information Technology (IT) and Telecom
  • Retail and E-commerce
  • Healthcare
  • Others

MLOPs market Region Analysis/Insights

The market is analyzed and market size insights and trends are provided by region, component, deployment mode , organization size, and industry verticals, as referenced above.

The regions covered in the market are North America, South America, Europe, Asia-Pacific, and the Middle East and Africa. The countries covered in the global MLOPs market report are U.S., Canada, Mexico, Brazil, Argentina, the Rest of South America, Germany, Italy, U.K., France, Spain, Netherlands, Belgium, Switzerland, Turkey, Russia, Rest of Europe, Japan, China, India, South Korea, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific, Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of the Middle East and Africa.

North America dominates the global MLOps market for several reasons. The region boasts a robust ecosystem of technology companies, research institutions, and skilled professionals specializing in machine learning and data science, fostering innovation and driving market leadership. Additionally, North America is home to many leading cloud service providers, offering scalable infrastructure and advanced MLOps solutions that cater to diverse business needs. Moreover, the region's strong regulatory environment, coupled with a mature enterprise market, encourages widespread adoption of MLOps practices to ensure compliance, governance, and risk management. Furthermore, North America's entrepreneurial culture and venture capital ecosystem facilitate the rapid growth of startups and emerging players in the MLOps space, contributing to the region's dominance in the global market. Overall, the convergence of technological expertise, supportive infrastructure, regulatory frameworks, and entrepreneurial dynamism positions North America as a frontrunner in driving the advancement and adoption of MLOps worldwide.

The Asia-Pacific region emerges as the fastest-growing region in the global MLOPs market due to several key factors. The region is witnessing rapid digital transformation across various industries, driving the adoption of machine learning and AI technologies to enhance business efficiency and competitiveness. As organizations in Asia-Pacific increasingly recognize the strategic importance of data-driven insights, there is a growing demand for MLOps solutions to streamline the development, deployment, and management of machine learning models.

The region section of the report also provides individual market-impacting factors and changes in regulation in the market domestically that impact the current and future trends of the market. Data points such as downstream and upstream value chain analysis, technical trends, and Porter’s five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and the challenges faced due to large or scarce competition from local and domestic brands, the impact of domestic tariffs, and trade routes are considered while providing forecast analysis of the region data.   

Competitive Landscape and MLOPs market Share Analysis

The market competitive landscape provides details of competitors. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, and application dominance. The above data points provided are only related to the companies' focus related to the market.

Some of the major players operating in the market are:

  • Databricks (U.S.)
  • Domino Data Lab (U.S.)
  • Kubeflow (by Google) (U.S.)
  • Amazon SageMaker (U.S.)
  • Paperspace Gradient (U.S.)
  • Fiddler AI (U.S.)
  • MLflow (by Databricks) (U.S.)
  • Valohai (Finland)
  • Pachyderm (U.S.)
  • ZenML (Germany)


SKU-

احصل على إمكانية الوصول عبر الإنترنت إلى التقرير الخاص بأول سحابة استخبارات سوقية في العالم

  • لوحة معلومات تحليل البيانات التفاعلية
  • لوحة معلومات تحليل الشركة للفرص ذات إمكانات النمو العالية
  • إمكانية وصول محلل الأبحاث للتخصيص والاستعلامات
  • تحليل المنافسين باستخدام لوحة معلومات تفاعلية
  • آخر الأخبار والتحديثات وتحليل الاتجاهات
  • استغل قوة تحليل المعايير لتتبع المنافسين بشكل شامل
Request for Demo

منهجية البحث

يتم جمع البيانات وتحليل سنة الأساس باستخدام وحدات جمع البيانات ذات أحجام العينات الكبيرة. تتضمن المرحلة الحصول على معلومات السوق أو البيانات ذات الصلة من خلال مصادر واستراتيجيات مختلفة. تتضمن فحص وتخطيط جميع البيانات المكتسبة من الماضي مسبقًا. كما تتضمن فحص التناقضات في المعلومات التي شوهدت عبر مصادر المعلومات المختلفة. يتم تحليل بيانات السوق وتقديرها باستخدام نماذج إحصائية ومتماسكة للسوق. كما أن تحليل حصة السوق وتحليل الاتجاهات الرئيسية هي عوامل النجاح الرئيسية في تقرير السوق. لمعرفة المزيد، يرجى طلب مكالمة محلل أو إرسال استفسارك.

منهجية البحث الرئيسية التي يستخدمها فريق بحث DBMR هي التثليث البيانات والتي تتضمن استخراج البيانات وتحليل تأثير متغيرات البيانات على السوق والتحقق الأولي (من قبل خبراء الصناعة). تتضمن نماذج البيانات شبكة تحديد موقف البائعين، وتحليل خط زمني للسوق، ونظرة عامة على السوق ودليل، وشبكة تحديد موقف الشركة، وتحليل براءات الاختراع، وتحليل التسعير، وتحليل حصة الشركة في السوق، ومعايير القياس، وتحليل حصة البائعين على المستوى العالمي مقابل الإقليمي. لمعرفة المزيد عن منهجية البحث، أرسل استفسارًا للتحدث إلى خبراء الصناعة لدينا.

التخصيص متاح

تعد Data Bridge Market Research رائدة في مجال البحوث التكوينية المتقدمة. ونحن نفخر بخدمة عملائنا الحاليين والجدد بالبيانات والتحليلات التي تتطابق مع هدفهم. ويمكن تخصيص التقرير ليشمل تحليل اتجاه الأسعار للعلامات التجارية المستهدفة وفهم السوق في بلدان إضافية (اطلب قائمة البلدان)، وبيانات نتائج التجارب السريرية، ومراجعة الأدبيات، وتحليل السوق المجدد وقاعدة المنتج. ويمكن تحليل تحليل السوق للمنافسين المستهدفين من التحليل القائم على التكنولوجيا إلى استراتيجيات محفظة السوق. ويمكننا إضافة عدد كبير من المنافسين الذين تحتاج إلى بيانات عنهم بالتنسيق وأسلوب البيانات الذي تبحث عنه. ويمكن لفريق المحللين لدينا أيضًا تزويدك بالبيانات في ملفات Excel الخام أو جداول البيانات المحورية (كتاب الحقائق) أو مساعدتك في إنشاء عروض تقديمية من مجموعات البيانات المتوفرة في التقرير.

Frequently Asked Questions

The MLOPs market size will be worth USD 11.69 billion by 2031.
The growth rate of the MLOPs market is 5.5%.
Growing Demand for Improved Model Governance and Explainability & Rising Cloud Adoption and Scalability are the growth drivers of the MLOPs market.
Component, deployment mode , organization size, and industry verticals are the factors on which the MLOPs market research is based.
Major companies in the MLOPs market are Databricks (U.S.), Domino Data Lab (U.S.), Kubeflow (by Google) (U.S.), Amazon SageMaker (U.S.), Paperspace Gradient (U.S.), Fiddler AI (U.S.), MLflow (by Databricks) (U.S.), Valohai (Finland), Pachyderm (U.S.), ZenML (Germany).