يتم الآن استخدام الذكاء الاصطناعي في كل قطاع تقريبًا، ويعتمد الناس بشكل كبير على التعلم الآلي والذكاء الاصطناعي لأنه يقلل الكثير من عبء العمل. تنمو صناعة الرقائق بسرعة كبيرة، وينمو إنتاجها أيضًا بسرعة كبيرة لأن العديد من الصناعات تستخدمها على نطاق واسع. حاليًا، يتم تصنيع رقائق الكمبيوتر باستخدام نوع خاص من التكنولوجيا يسمى ترسيب الطبقة الذرية (ALD)، والتي لديها القدرة على إنشاء أفلام دقيقة بسماكة ذرة واحدة. تُستخدم هذه التكنولوجيا كثيرًا لتطوير أجهزة أشباه الموصلات، ولكن لها أيضًا تطبيقات في بطاريات الليثيوم والخلايا الشمسية وغيرها من المجالات المتعلقة بالطاقة.
اليوم، يعتمد المصنعون بشكل متزايد على ALD لصنع أنواع جديدة من الأفلام، لكن الأمر يستغرق وقتًا لمعرفة كيفية ضبط العملية لكل مادة جديدة. جزء من المشكلة هو أن الباحثين يستخدمون في المقام الأول التجربة والخطأ لتحديد ظروف النمو المثلى. ومع ذلك، تشير دراسة نُشرت مؤخرًا، وهي واحدة من أولى الدراسات في هذا المجال العلمي، إلى أن استخدام الذكاء الاصطناعي (AI) قد يكون أكثر كفاءة. في دراسة المواد والواجهات التطبيقية التي أجرتها ACS، وصف باحثون من مختبر أرجون الوطني التابع لوزارة الطاقة الأمريكية (DOE) العديد من الأساليب القائمة على الذكاء الاصطناعي لتحسين عمليات مكافحة غسل الأموال بشكل مستقل. يصف عملهم نقاط القوة والضعف النسبية لكل نهج، فضلا عن الأفكار التي يمكن استخدامها لتطوير عمليات جديدة بشكل أكثر كفاءة واقتصادية. "توفر كل هذه الخوارزميات طريقة أسرع بكثير للتقارب مع المجموعات المثالية لأنك لا تضيع الوقت في وضع عينة في المفاعل، أو إخراجها، أو أخذ القياسات، وما إلى ذلك كما تفعل عادةً اليوم، حلقة في الوقت الفعلي قال عالم المواد الكبير في أرجون أنجيل يانجواسجيل، وهو مؤلف مشارك في الدراسة: "إنها متصلة بالمفاعل".