Overview
By employing algorithms rather than humans to create learning models, automated machine learning (AML) is helping to decrease numerous repetitive and tedious processes, including parameter selection and data cleaning. The process of formulating and testing hypotheses will continue owing to machine learning, a component of data science. The goal of autoML is to automate these processes to find the optimal algorithm within the range of features, algorithms, and hyperparameters that are accessible. The ML workflow's intelligent automation of repetitive processes is expected to be made easier by autoML. This makes it possible for high-value resources to shift from monotonous work to analysis and evaluation of the best-performing models that offer value. As a result, the time it takes to produce models and solutions based on them will be significantly reduced.
Although AutoML systems are capable of producing predictive models quickly enough to attain near-optimal performance, their reach is still limited, and their full promise remains unrealized. Even though AutoML is becoming more and more prevalent in featuring engineering and data preparation, there are still some highly domain-dependent applications where it is more of an art than engineering. AutoML will play a significant role in accelerating the adoption of ML-based solutions as it is an active research topic that is making great progress (with several players tackling existing challenges in automating the complete model development process).
Client Challenges
The client wanted to analyze the opportunities and challenges in relation to automated machine learning (AML). The main objective of the client is to align their solution offerings with upcoming customer demands for better decision-making, low cost, increased efficiency, innovation and to gain a competitive advantage by staying at the forefront of technological advancements.
Following are the requirements asked by the client:
DBMR Approach/Research Methodology
DBMR conducted a comprehensive analysis of the market landscape, identifying relevant trends and providing actionable insights to guide the client. We followed the tripod model for analyzing and validating data to provide valuable insights based on client requirements. DBMR’s approach or research methodology for analyzing and estimating automated machine learning (AML) is explained below:
Our approach involves the usage of both primary as well as secondary research methodologies to estimate, analyze and validate the data.
DBMR conducted secondary and primary research for both top-down and bottom-up methods for data analysis and validation. This approach was utilized to access both qualitative as well as quantitative data for each mentioned segments on global, regional and country-level data.
Above methodology was followed to analyze client requirement:
Hence, by following the above-mentioned approach, market insights were provided to the client accordingly.
Business Solutions
Following are the solutions provided while analyzing the automated machine learning (AML) solution market:
Business Impact
The client had a clear insight regarding the market competitiveness, upcoming technological implementation, and strategic steps/plans which will help them to cater prominent end users in different countries. The company has improved its conversion rates through its latest automated offering, which provides the most effective solution at different points in its buyer’s journey.
Conclusion
Data Bridge Market Research has provided in-depth insights related to the automated machine learning (AML) market to cater to each requirement. Adding to this, the report’s factual and consolidated information will help the client to evaluate the company’s growth in terms of technology penetration and can also be further utilized for decision-making and future planning. Apart from this, the client can even access/capture the business opportunities from the reports’ information.