مقالات

19 ديسمبر 2022

التحول في اكتشاف الأدوية من خلال الذكاء الاصطناعي

في الآونة الأخيرة، يتزايد استخدام الذكاء الاصطناعي (AI) بوتيرة سريعة. في كل المجالات تقريبًا، يتزايد استخدام الذكاء الاصطناعي. ومع تكيفه، أصبحت أشياء كثيرة أكثر سلاسة. مع تسارع الضجيج حول الذكاء الاصطناعي، كان كبار اللاعبين والتجار في السوق يتدافعون للترويج لكيفية استخدام منتجاتهم وخدماتهم للذكاء الاصطناعي. الذكاء الاصطناعي هو إعادة إنشاء عمليات الذكاء البشري بواسطة الآلات، وبشكل رئيسي من خلال أنظمة الكمبيوتر. عادةً، ما يشيرون إليه غالبًا بالذكاء الاصطناعي هو مجرد أحد مكونات الذكاء الاصطناعي، مثل التعلم الآلي. يتطلب الذكاء الاصطناعي مجموعة من الأجهزة والبرامج لكتابة وتدريب خوارزميات التعلم الآلي. تحظى بعض لغات البرمجة المشابهة للذكاء الاصطناعي، مثل Python وR وJava، بشعبية كبيرة.

قام فريق DBMR لدينا بالتحقيق في سوق برمجيات تشغيل التعلم الآلي وشهد أن أمريكا الشمالية تهيمن على سوق برمجيات تشغيل التعلم الآلي خلال الفترة المتوقعة 2022-2029 وستستمر في ازدهار اتجاه الهيمنة خلال الفترة المتوقعة بسبب وجود كبرى اللاعبين الرئيسيين وزيادة عدد الابتكارات التقنية في هذه المنطقة. من المتوقع أن يُظهر السوق معدل نمو سنوي مركب قدره 44.7٪ للفترة المتوقعة 2022-2029.

لمعرفة المزيد عن الدراسة، يرجى زيارة: https://www.databridgemarketresearch.com/ar/reports/global-machine-learning-operationalization-software-market

تاريخ الذكاء الاصطناعي

على الرغم من أن الذكاء الاصطناعي أصبح أكثر انتشارًا في الآونة الأخيرة بسبب زيادة حجم البيانات والخوارزميات المتقدمة وتحسينات قوة الحوسبة والتخزين، فقد تم تقديم هذا المصطلح في عام 1956. وفي ذلك الوقت، استكشفوا موضوعات مثل حل المشكلات والأساليب الرمزية. وفي ستينيات القرن العشرين، اهتمت وزارة الدفاع الأمريكية اهتمامًا حقيقيًا بهذا المجال وبدأت في تدريب أجهزة الكمبيوتر على محاكاة المنطق البشري الأساسي. على سبيل المثال، أنهت وكالة مشاريع الأبحاث الدفاعية المتقدمة (DARPA) مشاريع رسم خرائط الشوارع في السبعينيات. بنى هذا العمل المبكر الطريق للأتمتة والتفكير الرسمي المرئي في أجهزة الكمبيوتر اليوم، بما في ذلك أنظمة دعم القرار وأنظمة البحث الذكية المصممة لاستكمال وتعزيز القدرات البشرية.

كيف يغير الذكاء الاصطناعي عالمنا

يبارك الذكاء الاصطناعي حياتنا بمزايا مهمة مثل توصيات البحث عبر الإنترنت، وروبوتات الدردشة، والمساعدين الصوتيين، وغير ذلك الكثير. ومع مرور كل يوم، أصبح جزءًا لا يتجزأ من حياتنا. سيكون للذكاء الاصطناعي فوائد هائلة في المستقبل لأنه سيؤدي إلى ارتفاع معدلات الإنتاج وزيادة الإنتاجية في قطاعات متنوعة. في الوقت الحاضر وفي المستقبل القريب أيضًا، تستغرق الأتمتة المدعومة بالذكاء الاصطناعي وقتًا طويلاً. يمكن أتمتة ساعات العمل اليدوي. وهو قابل للتطبيق في كل مكان. ويمكن استخدامه في كل مكان، للتنبؤ بحركة المرور أو الظروف الجوية. يعد استخدام الأتمتة في الذكاء الاصطناعي أحد النعم الرئيسية من بين النعم الأخرى.

مزايا الذكاء الاصطناعي

Pharmaceutical Market of AI at a Glance

  • الحد من الأخطاء البشرية

الذكاء الاصطناعي مفيد في الحد مما يسمى "الخطأ البشري". البشر لا بد أن يرتكبوا الأخطاء، ولكن هذا ليس هو الحال مع أنظمة الكمبيوتر. لا ترتكب أجهزة الكمبيوتر هذه الأخطاء إذا تمت برمجتها بشكل صحيح. يتم تنفيذ الذكاء الاصطناعي بشكل مفيد من خلال تطبيق المعلومات التي تم جمعها مسبقًا من خلال مجموعة معينة من الخوارزميات. وبالتالي، يتم تقليل الأخطاء في هذا الصدد، ويصبح احتمال الحصول على درجة أعلى من الدقة أعلى.

  • يأخذ المخاطر بدلا من البشر

يمكن للمرء أن يتغلب على العديد من القيود المحفوفة بالمخاطر التي يواجهها البشر بمساعدة روبوت الذكاء الاصطناعي والذي بدوره يمكنه القيام بالأشياء الصعبة بالنسبة لنا، وهذه إحدى أهم مزايا الذكاء الاصطناعي.

على سبيل المثال، إذا عدنا وتذكرنا انفجار محطة تشيرنوبيل للطاقة النووية في أوكرانيا، لم تكن هناك روبوتات تعمل بالذكاء الاصطناعي في ذلك الوقت يمكنها مساعدتنا في تقليل تأثير الإشعاع في تلك الحالة؛ كان من الممكن أن تكون روبوتات الذكاء الاصطناعي منقذًا للحشد الهائل من خلال تقليل الحريق. يمكن استخدام روبوتات الذكاء الاصطناعي في مثل هذه الحالات التي قد يكون فيها التدخل خطيرًا.

  • التوفر الكامل

إذا وضعنا فترات الراحة جانبًا، فإن الإنسان العادي سيعمل ما يقرب من 4 إلى 6 ساعات يوميًا. العمل طوال اليوم يصبح صعباً ومستحيلاً بالنسبة للبشر. يعد الحفاظ على التوازن بين العمل والحياة، والتعامل مع المسؤوليات الشخصية، وضغوط العمل الشاقة أمرًا صعبًا. في بعض الأحيان تكون بعض الأعمال ضرورية ويجب الانتهاء منها في جدول زمني معين، ولكن في بعض الأحيان يكون ذلك مستحيلاً. باستخدام الذكاء الاصطناعي، يمكننا أن نجعل الآلات تعمل على مدار 24 ساعة طوال أيام الأسبوع دون أي فترات راحة، حتى أنها لا تشعر بالملل، على عكس البشر.

  • يساعد البحوث

يمكّن الذكاء الاصطناعي الباحثين من تجاوز الحجم الكبير من البيانات من مصادر مختلفة. باستخدام البيانات في الوقت الفعلي، يمكن للأبحاث الاستفادة من مجموعة واسعة من المعلومات المتاحة، طالما يمكن ترجمتها بسهولة. تعمل معاهد البحوث الطبية مثل مختبر بيانات سرطان الأطفال على تطوير برامج مفيدة لمتخصصي الرعاية الصحية لتوجيه مجموعات البيانات على نطاق واسع بشكل أفضل. كما تم استخدام الذكاء الاصطناعي على نطاق واسع لتقييم الأعراض واكتشافها لمنع تطور المرض. يتم تنفيذ حلول الرعاية الصحية عن بعد لتتبع تقدم المريض واستعادة بيانات التشخيص الحيوية والمساعدة في توصيل المعلومات السكانية إلى الشبكات المشتركة.

  • تقليل إجهاد الطبيب

وفقًا لبعض التقارير البحثية الأخيرة، يشعر أكثر من نصف الأطباء الأساسيين بالتوتر بسبب ضغوط المواعيد النهائية وعوامل أخرى في مكان العمل. يساعد الذكاء الاصطناعي في تبسيط الإجراءات، وأتمتة الوظائف، ومشاركة البيانات على الفور وتنظيم العمليات، مما يساعد الأطباء عمومًا على تجنب التوفيق بين الأشياء. ومع ذلك، يمكن للذكاء الاصطناعي المساعدة في العمليات التي تستغرق وقتًا أطول، وشرح التشخيص، على سبيل المثال، قد يواجه المتخصصون الطبيون بعض التخفيف من التوتر.

  • العمليات الجراحية الأكثر أمانا

يحصل الجراحون على مستوى متزايد من المهارة للعمل في المساحات الصغيرة التي قد تتطلب جراحة مفتوحة. ويساعد الذكاء الاصطناعي في هذا الصدد، حيث يجد مكانه المناسب في روبوتات الرعاية الصحية من خلال المساهمة في تلبية احتياجاته المناسبة في الجراحة. يمكن أن تكون الروبوتات أكثر دقة حول الأعضاء والأنسجة الحساسة، وتقلل من خطر العدوى، والألم بعد الجراحة، وتقلل من فقدان الدم. تتضمن الجراحة الروبوتية المزيد من المزايا، مثل تقليل الندوب وأوقات تعافي أقصر بسبب الشقوق الأصغر المطلوبة. على سبيل المثال، استخدم المركز الطبي بجامعة ماستريخت في هولندا روبوتًا مدعومًا بالذكاء الاصطناعي في عام 2017 لخياطة الأوعية الدموية الصغيرة، بعضها أكبر من 0.03 ملم. يتم التعامل مع الروبوت وإدارته بواسطة جراح يتم تحويل حركات يده إلى إجراءات دقيقة تؤديها أيدي الروبوت.

قام فريق DBMT الخاص بنا بالتحقيق في سوق الجراحة الروبوتية لأمراض النساء وشهد سيطرة أمريكا الشمالية على سوق الجراحة الروبوتية لأمراض النساء بسبب الطلب المتزايد على الجراحة طفيفة التوغل بين السكان داخل المنطقة. من المتوقع أن تشهد منطقة آسيا والمحيط الهادئ نمواً كبيراً خلال فترة التوقعات بسبب الوعي المتزايد حول صحة المرأة ونفقات الرعاية الصحية في المنطقة. بعض اللاعبين الرئيسيين العاملين في سوق الجراحة الروبوتية لأمراض النساء هم BOWA-electronic GmbH & Co. KG، وPrima Medical، وXCELLANCE Medical Technologies، وATMOS MedizinTechnik GmbH & Co. KG، وEthicon US, LLC.، وJohnson & Johnson Services, Inc. ، باركيل، وشركة

لمعرفة المزيد عن الدراسة، يرجى زيارة: https://www.databridgemarketresearch.com/ar/reports/global-gynecology-robotic-surgery-market

  • زيادة الرعاية الوقائية

يساعد الذكاء الاصطناعي والتعلم الآلي في الوقاية من الأمراض المعدية وإدارتها. وتساعد منصة معلومات تفشي المرض، Blue Dot، على تحليل تذاكر الطيران ومسارات الطيران للتنبؤ الدقيق بمسار كوفيد-19 من ووهان إلى بانكوك وسيول وتايبيه. وبالمثل، يمكن للأنظمة التي تدعم الذكاء الاصطناعي أن تساعد الأطباء على اكتشاف انتشار المرض عندما يدخل المرضى غرفة الطوارئ مع تشخيص سريع لتمكين إجراءات العزل والحجر الصحي الفعالة.

  • تقليل التكاليف الإجمالية

يساعد الذكاء الاصطناعي بشكل كبير في تقليل الوقت المستهلك في تنفيذ عمليات معينة وتكلفة العمليات. على سبيل المثال، يمكن للذكاء الاصطناعي تحليل ملايين الصور للكشف عن علامات المرض. إنه يزيل العمل اليدوي المكلف. يتم علاج المرضى بشكل أسرع وأكثر فعالية، مما يفرض العديد من المزايا مثل تقليل حالات القبول، وأوقات الانتظار، والحاجة إلى الأسرة.

تنبأت دراسة حديثة بتحقيق وفورات كبيرة في التكاليف في مجالات متعددة من أتمتة الذكاء الاصطناعي وهي:

  • تقليل أخطاء الجرعة – 16 مليار دولار
  • الجراحة بمساعدة الروبوت – 40 مليار دولار
  • المساعدة في سير العمل الإداري – 18 مليار دولار
  • مساعدو التمريض الافتراضيون – 20 مليار دولار
  • كشف الاحتيال – 17 مليار دولار

قام فريق DBMR لدينا بالتحقيق في سوق الروبوتات الطبية وأنظمة التصوير والتصور والأدوات الجراحية ذات التدخل البسيط وشهد أن السوق سيبلغ 91.22 مليار دولار أمريكي بحلول عام 2028 وسينمو بمعدل نمو سنوي مركب قدره 8.6٪ في فترة التوقعات المذكورة أعلاه. تتصدر منطقة أمريكا الشمالية سوق الروبوتات الطبية وأنظمة التصوير والتصور والأدوات الجراحية ذات التدخل الجراحي البسيط نظرًا لارتفاع معدل الإصابات العرضية في المنطقة وعدد كبير من كبار السن. من المتوقع أن تتوسع منطقة آسيا والمحيط الهادئ بمعدل نمو كبير خلال الفترة المتوقعة من 2021 إلى 2028 بسبب حوادث الطرق، وزيادة عدد كبار السن في اليابان والصين، ومن المتوقع أن تعزز الاقتصادات الناشئة ظهور إجراءات نظم المعلومات الإدارية في هذه المنطقة بالذات. .

لمعرفة المزيد عن الدراسة، يرجى زيارة:https://www.databridgemarketresearch.com/ar/reports/global-minimally-Invasive-medical-robotics-imaging-visualization-systems-surgical-instruments-market

الذكاء الاصطناعي في مجال الرعاية الصحية

إن المشاركة الكبيرة للذكاء الاصطناعي في تطوير منتج صيدلاني تمنحه تصميمًا عقلانيًا للدواء؛ المساعدة في اتخاذ القرار؛ يفهم العلاج المناسب للمريض، بما في ذلك الأدوية الشخصية؛ ويدير البيانات السريرية التي يتم إنشاؤها واستخدامها لتطوير الأدوية في المستقبل. على سبيل المثال، E-VAI عبارة عن منصة ذكاء اصطناعي للتحليل واتخاذ القرار تم تطويرها بواسطة Eularis، والتي تستخدم خوارزميات التعلم الآلي لإنشاء خرائط طريق تحليلية تعتمد على المنافسين وأصحاب المصلحة الرئيسيين والحصة السوقية الحالية للتنبؤ بالمحركات الرئيسية في مبيعات الأدوية، والتي تساعد المديرين التنفيذيين للتسويق على تخصيص الموارد لتحقيق أقصى استفادة من حصة السوق وتمكينهم أيضًا من توقع مكان إجراء الاستثمارات.

يلعب الذكاء الاصطناعي دورًا حيويًا في اكتشاف الأدوية. يمكن للذكاء الاصطناعي التعرف على مركبات الضربة والرصاص، وتوفير التحقق بشكل أسرع من هدف الدواء خلال فترة زمنية قصيرة، وتحسين تصميم هيكل الدواء. وله تطبيقات واسعة في جوانب متنوعة من اكتشاف الأدوية. يتم شرحه أدناه:

Pharmaceutical Market of AI at a Glance

على الرغم من المزايا التي يواجهها الذكاء الاصطناعي، إلا أنه يواجه بعض التحديات الكبيرة في مجال البيانات، مثل حجم البيانات ونموها وتنوعها وعدم اليقين. يمكن أن تتضمن مجموعات البيانات المتاحة لتطوير الأدوية في شركات الأدوية المختلفة ملايين المركبات وأدوات تعلم الآلة التقليدية التي لا يمكنها التعامل مع مثل هذه المشكلات.

على سبيل المثال، يمكن للنموذج الحسابي القائم على العلاقة الكمية بين البنية والنشاط (QSAR) التنبؤ بأعداد كبيرة من المركبات أو المعلمات الفيزيائية والكيميائية البسيطة، مثل السجل P أو السجل D، في وقت قصير. بالإضافة إلى ذلك، تواجه النماذج المستندة إلى QSAR أيضًا مشكلات خطيرة مثل خطأ البيانات التجريبية في مجموعات التدريب، ومجموعات التدريب الصغيرة، ونقص التحقق التجريبي.

لقد تم تقديم العديد من طرق السيليكو ومركبات الشاشة الافتراضية من المساحات الكيميائية الافتراضية، والتي، جنبًا إلى جنب مع البنية والأساليب القائمة على الليجند، توفر تحليلًا أفضل للملف الشخصي، وإزالة أسرع للمركبات غير الرصاصية واختيار جزيئات الدواء مع انخفاض النفقات. خوارزميات تصميم الأدوية، مثل مصفوفات كولوم والتعرف على بصمات الأصابع الجزيئية، تأخذ في الاعتبار الخصائص الفيزيائية والكيميائية والسمية للمساعدة في اختيار مركب الرصاص.

قام فريق DBMR الخاص بنا بالتحقيق في سوق اكتشاف الأدوية داخل السيليكو وشهد أن منطقة أمريكا الشمالية تقود سوق اكتشاف الأدوية داخل السيليكو بسبب التقدم التكنولوجي السريع والوجود القوي للبائعين الأقوياء ووجود عدد كبير من المرضى الذين يعانون من مختلف الأمراض المزمنة والمزمنة. أمراض معدية. ومن المتوقع أن تتوسع منطقة آسيا والمحيط الهادئ بمعدل نمو كبير بسبب ارتفاع عدد الأكاديميين والأبحاث المكثفة في مجال السرطان والسكري. ومن المتوقع أيضًا أن يساهم الارتفاع في النمو المرتفع في مجال تحديد العلامات الحيوية والتركيز على تقليل معدلات إعادة القبول والأخطاء الطبية في النمو في السوق العالمية.

لمعرفة المزيد عن الدراسة، يرجى زيارة:https://www.databridgemarketresearch.com/ar/reports/global-in-silico-drug-discovery-market

قائمة أدوات الذكاء الاصطناعي المستخدمة في اكتشاف الأدوية

تُستخدم أدوات الذكاء الاصطناعي المختلفة على نطاق واسع في اكتشاف الأدوية. تتوفر العديد من الأدوات المستندة إلى الويب، مثل LimTox وadmetSAR وToxtree وpkCSM للمساعدة في تقليل تكلفة العديد من الاختبارات المختلفة. تبحث الأساليب المتقدمة المعتمدة على الذكاء الاصطناعي في الغالب عن أوجه التشابه بين المركبات أو تتنبأ بسمية المركب بناءً على ميزات الإدخال. مثال آخر على هذه الأداة هو eToxPred، الذي يساعد على تقدير سمية المركبات وجدوى تصنيع العديد من الجزيئات العضوية الصغيرة وبدقة تصل إلى 72%. توجد أيضًا العديد من الأدوات الأخرى التي تساعد في التنبؤ بسمية المركب. في كثير من الأحيان، يكون لبعض الأدوية المعتمدة من إدارة الغذاء والدواء أحداث سلبية خطيرة يجب التنبؤ بها في أقرب وقت ممكن؛ يتم استخدام أدوات الذكاء الاصطناعي هذه في هذا الصدد. أدوات الذكاء الاصطناعي عبارة عن مجموعة واسعة من المجموعات، ولكننا نذكر فيما يلي بعض الأدوات:

Pharmaceutical Market of AI at a Glance

لمحة سريعة عن سوق الأدوية للذكاء الاصطناعي

تتجه العديد من شركات الأدوية نحو الذكاء الاصطناعي لتقليل التكلفة المالية وفرص الفشل المرتبطة بالتجارب. كانت هناك زيادة في سوق الذكاء الاصطناعي من 200 مليون دولار أمريكي في عام 2015 إلى 700 مليون دولار أمريكي في عام 2018، ومن المتوقع أن تصل إلى 5 مليارات دولار بحلول عام 2024. ومن المتوقع أن يحدث الذكاء الاصطناعي ثورة في قطاعي الأدوية والطب ومن المتوقع أن يصل إلى 40٪ النمو من عام 2017 إلى عام 2024. قامت العديد من شركات الأدوية باستثمارات كبيرة وتواصل الاستثمار في الذكاء الاصطناعي وتعاونت مع العديد من شركات الذكاء الاصطناعي لتطوير أدوات الرعاية الصحية الأساسية. على سبيل المثال، كان هناك تعاون بين شركة DeepMind Technologies، وهي شركة تابعة لشركة Google، مع مؤسسة Royal Free London NHS Foundation Trust، والتي تم استخدامها للمساعدة في علاج إصابات الكلى الحادة. مثال آخر هو Boehringer Ingelheim وHealX، اللذان تعاونا لإيجاد علاجات للأمراض العصبية النادرة. تعاونت شركة Eli Lilly and Company وAtomwise لتطوير أدوية تستهدف أهدافًا بروتينية جديدة. هناك علاج آخر مدرج في القائمة وهو التعاون بين Mateon Therapeutics وPointR Data، والذي ساعد في علاج المراحل المتأخرة من سرطان الجلد وسرطان البنكرياس والورم الدبقي. أجرى F. Hoffmann-La Roche وOwkin العديد من التجارب السريرية بناءً على خوارزميات التعلم الآلي.

التطبيقات المتقدمة القائمة على الذكاء الاصطناعي

  • الروبوتات النانوية القائمة على الذكاء الاصطناعي لتوصيل الأدوية

تم تصميم الروبوتات النانوية بشكل أساسي لتتكون من دوائر متكاملة وأجهزة استشعار وإمدادات طاقة ونسخ احتياطي آمن للبيانات، والتي يتم الحفاظ عليها عبر التقنيات الحسابية، مثل الذكاء الاصطناعي. وهي مبرمجة لتجنب الاصطدام، وتحديد الهدف، والكشف والالتصاق، وأخيراً إخراج الجسم من الجسم. يتيح لهم أحدث التقدم في الروبوتات النانوية/الدقيقة الانتقال إلى الموقع المستهدف بناءً على الظروف الفسيولوجية، مثل الرقم الهيدروجيني، وتحسين الفعالية وتقليل التأثيرات الضارة الجهازية.

هناك العديد من العوامل التي يجب أخذها في الاعتبار، مثل تعديل الجرعة، والإطلاق المستدام، وإطلاق السيطرة، وإطلاق الأدوية التي تحتاج إلى التحكم في توصيل الأدوية بشكل مناسب. تُستخدم غرسات الرقائق الدقيقة في الإطلاق المبرمج للزرعة وكذلك لاكتشاف الموقع المناسب للزرعة في الجسم

قام فريق DBMR لدينا بدراسة سوق الروبوتات النانوية وشهد أن أمريكا الشمالية تهيمن على سوق الروبوتات النانوية بسبب ارتفاع اعتماد تكنولوجيا الروبوتات النانوية. علاوة على ذلك، فإن وجود بنية تحتية متطورة للرعاية الصحية سيعزز نمو سوق الروبوتات النانوية في المنطقة خلال الفترة المتوقعة. من المتوقع أيضًا أن توفر مجالات التطبيق المتنامية للمجاهر ودمج الفحص المجهري مع التحليل الطيفي فرصًا محتملة لنمو سوق الروبوتات النانوية في السنوات القادمة.

لمعرفة المزيد عن الدراسة يرجى زيارة:https://www.databridgemarketresearch.com/ar/reports/global-nanorobots-market

  • ظهور الذكاء الاصطناعي في طب النانو

من المؤكد أن استخدام تكنولوجيا النانو آخذ في الارتفاع. ويعتمد العلماء على هذه المنهجية ويشركونها أكثر فأكثر في مجال الطب. تُستخدم أدوية النانو لتشخيص وعلاج العديد من الأمراض المعقدة، وهي فيروس نقص المناعة البشرية والسرطان والملاريا والربو والأمراض الالتهابية المختلفة. في السنوات الأخيرة، أصبح توصيل الأدوية المعدلة بالجسيمات النانوية ضروريًا في مجال العلاج والتشخيص نظرًا لفعاليته وعلاجه المعزز. إذا تم مزج تكنولوجيا النانو مع الذكاء الاصطناعي، فيمكن أن يحل العديد من المشكلات في تطوير الصياغة. على سبيل المثال، ساعد الذكاء الاصطناعي في تحضير السيليكازومات. السيليكازومات عبارة عن مزيج من iRGD، وهو الببتيد المخترق للورم، وجسيمات السيليكا النانوية متعددة الوظائف المحملة بالإرينوتيكان. زادت الأدوية النانوية من امتصاص السيليكازومات ثلاث إلى أربع مرات حيث يساعد iRGD في تحسين انتقال السيليكازومات.

  • الذكاء الاصطناعي في الجمع بين توصيل الأدوية والتنبؤ بالتآزر/العداء

تمت الموافقة على عدة مجموعات جديدة من الأدوية وتسويقها لعلاج الأمراض المعقدة، مثل السل والسرطان، حيث يمكن أن توفر تأثيرًا تآزريًا للشفاء السريع للمرضى. تتطلب الأدوية المحتملة المختارة لهذا المزيج فحصًا عالي الإنتاجية لعدد كبير من الأدوية، مما يجعل العملية مملة. على سبيل المثال، يتضمن علاج السرطان مزيجًا من ستة أو سبعة أدوية. راشد وآخرون. طور نموذجًا لمنصة تحسين النمط الظاهري التربيعي، والذي يُستخدم للكشف عن العلاج المركب الأمثل لعلاج المايلوما المتعددة المقاومة للبورتيزوميب من خلال مجموعة من 114 دواء معتمد من إدارة الغذاء والدواء. أفضل عقارين مشتركين في هذا النموذج هما ديسيتابين (Dec) وميتوميسين C (MitoC).

إلى جانب التطبيقات المتقدمة للذكاء الاصطناعي، فإن له أيضًا أهمية في تحديد المواقع في السوق. مع سهولة التكنولوجيا والتجارة الإلكترونية، أصبح من الأسهل على جميع الشركات نشر علامتها التجارية على المنصة العامة. إحدى الأدوات الأكثر استخدامًا هي تحسين محركات البحث (SEO)، والتي تستخدمها معظم الشركات لشغل مكانة ثابتة في التسويق عبر الإنترنت والمساعدة في وضع المنتج في السوق. تحاول الشركات باستمرار إدارة موقعها في مركز أعلى في اللعبة، مما يمنح الاعتراف بعلامتها التجارية في وقت قصير.

قام فريق DBMR لدينا بالتحقيق في سوق تغليف التجارة الإلكترونية وشهد أن منطقة آسيا والمحيط الهادئ تهيمن على سوق تغليف التجارة الإلكترونية من حيث الحصة السوقية والإيرادات وستستمر في ازدهار هيمنتها خلال الفترة المتوقعة. ويرجع ذلك إلى تفضيل المستهلك المتزايد للصناديق المموجة في البلدان النامية مثل الهند والصين واليابان. ، الصين تقود سوق آسيا والمحيط الهادئ. أدى Covid-19 إلى ازدهار نمو السوق. أدى كوفيد-19 إلى تقييد حركة الأشخاص والمواد. لعبت التجارة الإلكترونية دورًا مهمًا في الوباء بسبب زيادة الطلب على السلع الأساسية مثل البقالة والأدوية والخضروات وغيرها من المنتجات.

لمعرفة المزيد عن الدراسة، يرجى زيارة:https://www.databridgemarketresearch.com/ar/reports/global-e-commerce-packaging-market

خاتمة:

مع تقدم الذكاء الاصطناعي وأدواته الرائعة، أصبحت شركات الأدوية تستفيد في العديد من الجوانب. فهو يؤثر على عملية تطوير الدواء جنبًا إلى جنب مع دورة حياة المنتج الشاملة، وهو ما يفسر بسهولة الارتفاع في عدد الشركات الناشئة. يواجه قطاع الرعاية الصحية العديد من التحديات، مثل ارتفاع تكلفة الأدوية والعلاجات. ويحتاج المجتمع إلى تغييرات كبيرة في هذا المجال، الذي يجب إعطاؤه أهميته. مع تزايد عصر الصحة الرقمية وانتشار الذكاء الاصطناعي، تظهر أيضًا الأدوية الشخصية بالجرعة المطلوبة ومعلمات الإطلاق والجوانب الأخرى المطلوبة التي يمكن تصنيعها وفقًا لاحتياجات المريض الفردية. لن تساعد التقنيات القائمة على الذكاء الاصطناعي في تسريع الوقت اللازم حتى تصبح المنتجات متاحة في السوق فحسب، بل بالإضافة إلى ذلك، ستساعد أيضًا في تحسين المنتجات والسلامة العامة لعملية الإنتاج.

علاوة على ذلك، فإنه سيوفر أيضًا استخدامًا أفضل للموارد المتاحة والفعالة من حيث التكلفة، وبالتالي زيادة أهمية الأتمتة. إلى جانب هذا الجانب، فإن القلق الأكثر أهمية المرتبط بتنفيذ هذه التقنيات هو فقدان الوظائف الذي سيتبع ذلك واللوائح الصارمة المطلوبة لتشغيل الذكاء الاصطناعي. ومع ذلك، فإن هذه الأنظمة تساعد في تشجيع البساطة لدى البشر ولا تحل محلها بشكل كامل. يقوم العديد من التجار بتضمين مكونات الذكاء الاصطناعي في عروضهم القياسية أو توفير الوصول إلى منصات الذكاء الاصطناعي كخدمة (AIaaS). يمكن أن تصبح تكاليف الأجهزة والبرامج والموظفين الخاصة بالذكاء الاصطناعي باهظة الثمن. تكمن أهمية AIaaS في أنها تسمح للأفراد والشركات بتجربة الذكاء الاصطناعي لعدة أغراض تجارية. تعد المجالات الفرعية المختلفة للذكاء الاصطناعي، مثل التعلم الآلي والشبكات العصبية والتعلم العميق، مفيدة أيضًا بنفس القدر في اكتشاف الأدوية. إلى جانب ذلك، تدعم العديد من التقنيات الأخرى الذكاء الاصطناعي وتمكنه، وهي رؤية الكمبيوتر، وإنترنت الأشياء، والخوارزميات المتقدمة، ووحدات المعالجة الرسومية.


شهادات العميل