مقالات

14 ديسمبر 2022

تطبيق الذكاء الاصطناعي في تشخيص السرطان

يشار إلى الخوارزميات أو برامج الكمبيوتر التي تستخدم البيانات لتحديد مسار العمل أو إجراء تنبؤات بالذكاء الاصطناعي. لكي يتمكن الكمبيوتر من فحص البيانات والتوصل إلى حكم، قد يقوم العلماء بتطوير مجموعة من القواعد أو التعليمات التي يجب على الكمبيوتر اتباعها. التعلم الآلي هو أسلوب آخر من تقنيات الذكاء الاصطناعي حيث يقوم النظام بتدريب نفسه على كيفية تقييم البيانات وفهمها. ونتيجة لذلك، قد تكتشف خوارزميات التعلم الآلي الأنماط التي يصعب على العين البشرية أو الدماغ التعرف عليها. بالإضافة إلى ذلك، تتحسن هذه الخوارزميات في تعلم البيانات وتفسيرها عندما تتعرض لمزيد من المعلومات الجديدة.

تحلل أبحاث سوق Data Bridge أنه من المتوقع أن يشهد الذكاء الاصطناعي في سوق الرعاية الصحية معدل نمو سنوي مركب قدره 51.37٪ خلال الفترة المتوقعة 2022-2029. يشير هذا إلى أن القيمة السوقية، التي كانت 6.35 مليار دولار أمريكي في عام 2021، سترتفع إلى 175.22 مليار دولار أمريكي بحلول عام 2029. في يناير 2019، طورت Dartford وGravesham NHS Trust في المملكة المتحدة تقنية يمكن ارتداؤها تعمل بالذكاء الاصطناعي لمراقبة المرضى عند خروجهم من المستشفى. من المستشفيات. في أكتوبر 2019، أعلنت Care.ai وNVIDIA عن تعاون لتوفير مراقبة مستقلة للمرضى تعمل بالذكاء الاصطناعي في مجال الرعاية الصحية من خلال الاستفادة من منصة NVIDIA.

لمعرفة المزيد عن الدراسة، قم بزيارة:https://www.databridgemarketresearch.com/ar/reports/global-artificial-intelligence-in-healthcare-market

كما تم تطبيق التعلم العميق، وهو مجموعة فرعية من التعلم الآلي، من قبل الباحثين في تطبيقات تصوير السرطان. يشير التعلم العميق إلى الخوارزميات التي تصنف البيانات بطرق مشابهة للدماغ البشري. تُستخدم الشبكات العصبية الاصطناعية بواسطة تقنيات التعلم العميق لمحاكاة كيفية استقبال خلايا الدماغ للرسائل الواردة من بقية الجسم وتفسيرها والاستجابة لها. من أجل تحديد ما إذا كانت الكتلة سرطانية أم لا، يقوم الأطباء بإجراء اختبارات تصوير السرطان. ما مدى سرعة تطوره إذا كان سرطانًا؟ ما مدى انتشاره؟ هل تعافى بعد تلقي العلاج؟ وفقًا للدراسات، قد يعزز الذكاء الاصطناعي سرعة ودقة وموثوقية استجابات العاملين في المجال الطبي. يمكن فهم تطبيق الذكاء الاصطناعي في علاج الأورام في مراحل مختلفة:

AI in Oncology

الشكل 1: دور الذكاء الاصطناعي في علاج الأورام

  • العثور على السرطان في مرحلة مبكرة- يتم فحص الأشخاص بشكل روتيني بحثًا عن مؤشرات على السرطان أو الخلايا التي يمكن أن تتطور إلى سرطان باستخدام إجراءات مثل التصوير الشعاعي للثدي واختبارات عنق الرحم. الهدف هو تحديد وعلاج السرطان مبكرًا قبل أن ينتشر أو حتى ينمو. للمساعدة في اختبارات فحص سرطان الثدي وأنواع أخرى من اختبارات فحص السرطان، ابتكر العلماء تقنيات الذكاء الاصطناعي. على مدار العشرين عامًا الماضية، ساعدت خوارزميات الكمبيوتر القائمة على الذكاء الاصطناعي الأطباء في فك رموز تصوير الثدي بالأشعة السينية، لكن مجال الدراسة يتطور بسرعة. تم تطوير نظام الذكاء الاصطناعي من قبل أحد الفرق للمساعدة في تحديد عدد المرات التي يجب فيها فحص النساء للكشف عن سرطان الثدي. تتنبأ الخوارزمية باحتمالية إصابة الشخص بسرطان الثدي خلال السنوات الخمس التالية بناءً على نتائج تصوير الثدي بالأشعة السينية. كان أداء النموذج أفضل في الاختبارات من طرق التنبؤ الحالية بمخاطر سرطان الثدي. تم تطوير واختبار خوارزمية التعلم العميق التي يمكنها التعرف على حالات سرطان عنق الرحم التي تحتاج إلى إزالتها أو علاجها من قبل باحثي NCI. يقوم أخصائيو الصحة في بعض الحالات منخفضة الموارد بفحص عنق الرحم بكاميرا صغيرة للتحقق من وجود سرطان عنق الرحم. وهذا النهج واضح ومستدام؛ ومع ذلك، فهي ليست دقيقة جدًا أو يمكن الاعتماد عليها. تم إثبات العديد من تقنيات الذكاء الاصطناعي في الدراسات السريرية لتحسين تشخيص الأورام الغدية، وهي نموات سابقة للسرطان يمكن أن تؤدي إلى سرطان القولون. ويشعر بعض المتخصصين بالقلق من أن تقنيات الذكاء الاصطناعي هذه قد تجبر العديد من الأشخاص على الخضوع لعلاجات واختبارات إضافية غير ضرورية لأن نسبة صغيرة فقط من الأورام الغدية تتطور إلى سرطان.
  • كشف وتشخيص السرطان- يتمتع الذكاء الاصطناعي بالقدرة على المساعدة في تشخيص السرطان مبكرًا لدى الأشخاص الذين تظهر عليهم الأعراض بالفعل. على سبيل المثال، قد يُسهّل نموذج الذكاء الاصطناعي الذي أنشأه الدكتور تركبي وزملاؤه في مركز أبحاث السرطان التابع للمعهد الوطني للسرطان على أطباء الأشعة تحديد سرطان البروستاتا الذي قد يكون عدوانيًا في نوع جديد نسبيًا من فحص التصوير بالرنين المغناطيسي للبروستاتا المعروف باسم التصوير بالرنين المغناطيسي متعدد المعلمات. إن نموذج الذكاء الاصطناعي الذي طوره فريق NCI "قد يقلل من معدل الخطأ ويجعل منحنى [التعلم] أسهل لأخصائيي الأشعة الممارسين"، وفقًا للدكتور تركبي. وقال إن نموذج الذكاء الاصطناعي قد يكون بمثابة "خبير افتراضي" لأخصائيي الأشعة الأقل خبرة الذين يتعلمون استخدام التصوير بالرنين المغناطيسي متعدد المعلمات. تم تطوير العديد من نماذج الذكاء الاصطناعي للتعلم العميق لمساعدة الأطباء في اكتشاف سرطان الرئة من خلال الأشعة المقطعية. هناك نسبة كبيرة من نتائج الاختبارات الإيجابية الكاذبة التي تشير إلى أن الشخص مصاب بسرطان الرئة في حين أنه غير مصاب بالفعل، لأن بعض التشوهات غير السرطانية في الرئتين قد تبدو في الأشعة المقطعية مشابهة جدًا للسرطان. من الناحية النظرية، قد يقلل الذكاء الاصطناعي من حدوث النتائج الإيجابية الكاذبة وينقذ بعض المرضى من الإجهاد غير الضروري، واختبارات المتابعة، والعمليات الجراحية من خلال التمييز بشكل أفضل بين سرطان الرئة والتغيرات غير السرطانية في الصور المقطعية. أنشأ فريق من الباحثين خوارزمية تعلم عميقة لاكتشاف سرطان الرئة وتجنب التغيرات الأخرى التي تشبه السرطان.
  • اختيار علاج السرطان- يستخدم الأطباء أيضًا اختبارات التصوير لجمع بيانات مهمة عن السرطان، مثل مدى سرعة تطوره، وما إذا كان قد انتشر، وما إذا كان من المحتمل أن يعود بعد العلاج. يمكن للأطباء استخدام هذه المعلومات لتحديد أفضل مسار للعمل لمرضاهم. تشير العديد من الأبحاث إلى أن الذكاء الاصطناعي قد يكون قادرًا على استخراج البيانات التنبؤية من عمليات التصوير بشكل أكثر دقة وشمولاً مقارنة بالبشر حاليًا. على سبيل المثال، يمكن لنموذج التعلم العميق الذي طورته الدكتورة هارمون وزملاؤها التنبؤ بخطر أن المريض المصاب بسرطان المثانة سيحتاج إلى علاجات إضافية بالإضافة إلى الجراحة. وفقًا للمتخصصين الطبيين، فإن مجموعات الخلايا السرطانية التي انتقلت خارج المثانة لدى حوالي 50% من الأشخاص المصابين بأورام في عضلة المثانة (سرطان المثانة الغازي للعضلات) تكون صغيرة جدًا بحيث لا يمكن اكتشافها باستخدام الطرق التقليدية. يمكن أن تستمر هذه الخلايا غير المكتشفة في التكاثر بعد الجراحة إذا لم يتم التخلص منها، مما يؤدي إلى تكرارها. ويمكن القضاء على هذه التجمعات الصغيرة عن طريق العلاج الكيميائي، مما يمنع السرطان من العودة بعد الجراحة. ومع ذلك، كما أظهرت التجارب السريرية، قد يكون من الصعب تحديد ما إذا كان المرضى يحتاجون أيضًا إلى العلاج الكيميائي، وفقًا للدكتور هارمون. يقوم النموذج بتحليل الصور الرقمية لأنسجة الورم الأصلية لتحديد ما إذا كانت هناك تجمعات سرطانية مجهرية في العقد الليمفاوية المحيطة. وفي دراسة نشرت عام 2020، تفوق نموذج التعلم العميق على الطريقة التقليدية للتنبؤ بما إذا كان سرطان المثانة قد انتشر، بناءً على عدة متغيرات بما في ذلك عمر المريض وخصائص الورم المحددة. وتتم دراسة التركيب الجيني لسرطان المريض بشكل متزايد لتحديد أفضل مسار للعمل. طور باحثون صينيون خوارزمية تعلم عميقة للتنبؤ بوجود طفرات جينية مهمة في أنسجة سرطان الكبد من خلال صور الأنسجة، وهو أمر لا يستطيع علماء الأمراض تحقيقه بمجرد النظر إلى الصور. العلماء الذين أنشأوا الخوارزمية لا يعرفون كيف تحدد التغيرات الجينية الموجودة في الورم، مما يجعل أداتهم مثالاً للذكاء الاصطناعي الذي يعمل بطرق مدهشة.
  • الذكاء الاصطناعي في التصوير الطبي- يمكن أن يستفيد التنبؤ بالسرطان من الذكاء الاصطناعي والتعلم الآلي. الذكاء الاصطناعي قادر على اكتشاف الأورام الخبيثة التي انتشرت بالفعل والأشخاص المعرضين لخطر كبير للإصابة بها قبل حدوثها. وهذا يتيح للمهنيين الطبيين مراقبة هؤلاء المرضى عن كثب والتصرف بسرعة عند الضرورة. كانت عالمة الكمبيوتر في معهد ماساتشوستس للتكنولوجيا تدعى ريجينا بارزيلاي مهتمة باختبار الذكاء الاصطناعي (AI) للتنبؤ بالسرطان. ونظر فريق معهد ماساتشوستس للتكنولوجيا في إمكانية تحديد النساء المعرضات لخطر الإصابة بسرطان الثدي قبل ظهور أي أعراض واضحة. ولمعرفة المرضى المصابين بالسرطان، قامت بجمع أكثر من 40.000 صورة ماموجرام للنساء على مدى أربع سنوات، بإجمالي حوالي 89.000، وقارنت عمليات المسح بسجل الأورام الوطني. استخدمت ريجينا بعد ذلك مجموعة مختارة من هذه الصور لتدريب خوارزمية التعلم الآلي (ML)، وهو نوع من الذكاء الاصطناعي، ثم استخدمت تلك الخوارزمية لإنشاء تنبؤات. حددت الخوارزمية بشكل صحيح أن 30% من مرضى سرطان الثدي في المستقبل ينتمون إلى مجموعة عالية المخاطر. للذكاء الاصطناعي استخدامات مختلفة في مجال التصوير الطبي. يعد تحديد وتصنيف الأورام الخبيثة من أكثر الأمور وضوحًا. وافقت إدارة الغذاء والدواء الأمريكية على Paige Prostate، وهي أداة علم أمراض السرطان تعمل بالذكاء الاصطناعي، في سبتمبر 2021. جنبًا إلى جنب مع عارض علم الأمراض الرقمي FullFocus، تساعد أداة الذكاء الاصطناعي هذه في اكتشاف سرطان البروستاتا. قامت إدارة الغذاء والدواء الأمريكية بمراجعة بيانات من تحقيق سريري حيث قام 16 متخصصًا في علم الأمراض بتقييم 527 صورة لخزعة البروستاتا بحثًا عن مؤشرات السرطان كشرط أساسي للحصول على هذه الموافقة.
  • الذكاء الاصطناعي في فحص الدم- يمكن لاختبار الدم مع تحسينات الذكاء الاصطناعي أن يساعد الأطباء في الكشف عن السرطان بشكل أكثر دقة. وفقًا لدراسة نشرتها مجلة Cancer Cell International، فإن تحديد ملامح الدم، الذي يحلل ملفات ctDNA وmiRNA البلازمية باستخدام خوارزميات الذكاء الاصطناعي، يعد وسيلة أكثر فعالية للعثور على السرطان ومراقبته من عمليات التصوير المقطعي التقليدية. ابتكر باحثو مركز جونز هوبكنز كيميل للسرطان تقنية متطورة تعتمد على الذكاء الاصطناعي للكشف عن سرطان الرئة باستخدام اختبار الدم. تم استخدام عينات دم من 796 مشاركًا من الولايات المتحدة والدنمارك وهولندا لاختبار هذه الطريقة. تم إقران اختبار الدم هذا من قبل الباحثين بالمؤشرات الحيوية للبروتين، وعوامل الخطر السريرية، والأشعة المقطعية للمرضى. وقد تمكنوا من تحديد السرطان بشكل صحيح لدى 91% من الأشخاص الذين يعانون من مراحل المرض المبكرة وفي 96% من المرضى الذين يعانون من مراحل السرطان المتقدمة نتيجة لذلك.
  • الذكاء الاصطناعي في العلاج المناعي- تتمثل الوظيفة الأساسية للذكاء الاصطناعي في العلاج المناعي في تقييم نتائج العلاجات المختلفة ومساعدة الأطباء في تعديل وصفاتهم الطبية. تم تطوير طريقة مدعومة بالذكاء الاصطناعي من قبل فريق بحث في مركز إم دي أندرسون للسرطان والمركز الطبي الجنوبي الغربي لجامعة تكساس لتحديد ما إذا كان الجهاز المناعي للمريض يتعرف على المستضدات الجديدة - الببتيدات التي يتم تصنيعها عندما تحور جينومات الخلايا السرطانية. ومن شأن خوارزميات الذكاء الاصطناعي هذه أن تجعل من الممكن التنبؤ بكيفية تفاعل الخلايا السرطانية مع العلاجات المناعية. تبحث الخلايا التائية في جهاز المناعة لدينا دائمًا عن مؤشرات السرطان والكائنات الغازية الأخرى. ترتبط هذه الخلايا ببعضها البعض عندما تتعرف على المستضدات المستحدثة. ومع ذلك، فإن بعض المستضدات المستحدثة لا يتم التعرف عليها، مما يعزز انتشار السرطان. ستجعل هذه المعلومات القدرة على توقع استجابة المريض للعلاجات المناعية وإنشاء علاجات فردية تعتمد على الخلايا التائية ولقاحات السرطان أمرًا ممكنًا.

من المتوقع أن يشهد سوق الأورام المناعية (IO) نموًا في السوق بمعدل 8.90٪ في الفترة المتوقعة من 2022 إلى 2029. يتم تقسيم سوق الأورام المناعية (IO) على أساس النوع والهدف والمؤشر والنهاية. المستخدمين وقناة التوزيع. من المتوقع أن تشهد منطقة آسيا والمحيط الهادئ قدرًا كبيرًا من النمو في معدل النمو الإيجابي المتزايد في اعتماد العلاج المناعي للسرطان. علاوة على ذلك، من المتوقع أن يؤدي ارتفاع معدل الإصابة بالمرض وبالتالي زيادة معدل الوفيات إلى دفع نمو سوق علاج الأورام المناعية (IO) في المنطقة في السنوات القادمة.

لمعرفة المزيد عن الدراسة، قم بزيارة:https://www.databridgemarketresearch.com/ar/reports/global-immuno-oncology-market

  • تطوير الأدوية- قد يستجيب نفس الدواء بشكل مختلف لأشكال مختلفة من السرطان. الذكاء الاصطناعي قادر على التنبؤ بكيفية تأثير الأدوية المختلفة على الخلايا الخبيثة. تساعد هذه المعلومات في إنشاء أدوية جديدة مضادة للسرطان وتوقيت استخدامها. على سبيل المثال، اعتمادًا على الحالة الطفرية للخلية السرطانية، أنشأ فريق بحثي خوارزمية غابة عشوائية يمكنها التنبؤ بعمل الأدوية المضادة للسرطان.

فوائد الذكاء الاصطناعي في علاج الأورام

يتمتع الذكاء الاصطناعي عمومًا بالكثير من المزايا في المجال الطبي. فيما يلي أهم ثلاث فوائد لاستخدام الذكاء الاصطناعي في اكتشاف السرطان وعلاجه:

AI in Oncology

الشكل 2: فوائد الذكاء الاصطناعي في علاج الأورام

  • الطب والعلاجات الشخصية - تتيح البيانات الضخمة والذكاء الاصطناعي للمهنيين الطبيين فحص مجموعة متنوعة من البيانات حول المريض والخلايا السرطانية لتطوير علاجات فردية. الآثار الجانبية لهذا النوع من العلاج ستكون أقل حدة. سيكون الضرر أقل للخلايا السليمة، ولكن سيكون له تأثير أكبر على الخلايا السرطانية. يساعد الذكاء الاصطناعي أطباء الأشعة في تحديد الأورام والتشوهات السرطانية التي تتطلب تدخلًا طبيًا حقيقيًا. وفقا لدراسة نشرت في مجلة المعهد الوطني للسرطان، يمكن لخوارزميات الذكاء الاصطناعي تحديد الآفات السابقة للتسرطن في صور عنق الرحم وتمييزها عن التشوهات الأخرى لإنقاذ المرضى من تلقي العلاج غير الضروري للمشاكل الصغيرة.
  • القضاء على الإجراءات الغازية- في بعض الأحيان، لا يتم اكتشاف طبيعة الورم الحميدة إلا بعد إجراء عملية الإزالة، مما يسمح بتجنب الإجراء تمامًا. يمكن تقليل مثل هذه الحوادث بشكل كبير بمساعدة الذكاء الاصطناعي في عملية الكشف عن السرطان. على سبيل المثال، وجدت إحدى الدراسات أن الذكاء الاصطناعي يمكن أن يقلل من إجراءات الحفاظ على الثدي بنسبة 30.6%. يمكن استخدام خزعات الإبرة الموجهة بالصور لتدريب خوارزميات التعلم الآلي للتعرف على الأورام الخبيثة. تم استخدام نظام الغابة العشوائية للتعلم الآلي لتقييم 335 مريضًا محتملًا بالسرطان، ووجد الباحثون أنه أوقف ثلث الإجراءات غير الضرورية.
  • تقليل الإيجابيات والسلبيات الكاذبة- سيؤدي الذكاء الاصطناعي للكشف عن السرطان إلى زيادة دقة التشخيص وتقليل النتائج الإيجابية والسلبية الكاذبة. لدينا دليل بفضل الأبحاث المتعلقة بالكشف عن سرطان الثدي. واحدة من كل عشر مريضات يخضعن لتصوير الثدي بالأشعة السينية من قبل الأطباء لديهم نتائج إيجابية كاذبة، مما يجبرهن على الخضوع لإجراءات مرهقة واختبارات غازية غير ضرورية. أنشأ فريق البحث في Google برنامجًا يستخدم الذكاء الاصطناعي لتقليل قراءات التصوير الشعاعي للثدي الإيجابية والسلبية الكاذبة بنسبة 6% و9% على التوالي. أنشأ فريق آخر من الباحثين خوارزمية الذكاء الاصطناعي لتحديد سرطان الثدي. ساعدت هذه الخوارزمية أخصائيي الأشعة في خفض معدلات النتائج الإيجابية الكاذبة بنسبة 37.3% أثناء الفحص.

تحديات الذكاء الاصطناعي في علم الأورام والتوقعات المستقبلية

إن التفاعلات غير الخطية المعقدة، والتسامح مع الأخطاء، والمعالجة الموزعة المتزامنة، والتعلم، كلها مهام يمكن للذكاء الاصطناعي التعامل معها بسهولة. نظرًا لفوائده في التكيف الذاتي، والمعالجة المتزامنة للمعلومات الكمية والنوعية، والنتائج المؤكدة من العديد من الدراسات السريرية في العديد من المجالات. ليس هناك شك في أن الذكاء الاصطناعي يُستخدم في الرعاية السريرية بعدة طرق. إنه يستغل بشكل كامل الجوانب المختلفة للتباين السريري بينما يعالج أيضًا النقص الحالي في العالمية والموضوعية في الأنظمة المتخصصة. يمكن للمستشفيات تدريب الأطباء المبتدئين على التشخيص السريري واتخاذ القرار باستخدام الذكاء الاصطناعي. يناقش عدد متزايد من الأوراق الأكاديمية القدرات التشخيصية والتكهنية الرائعة لأنظمة الكمبيوتر القائمة على التعلم الآلي.

ولضمان تطبيقها في تشخيص السرطان والتنبؤ به، تواجه تكنولوجيا الذكاء الاصطناعي بعض الصعوبات الكبيرة التي يجب التغلب عليها. على سبيل المثال، لا يمكن استخدام بيانات الإدخال الأولية من التصوير الطبي. تعد معالجة المعلومات واستخراجها من بيانات الصورة أمرًا ضروريًا. هناك حاجة إلى مزيد من الدراسة لتفسير نتائج معامل الأوزان في نماذج الشبكات العصبية، والتي تم التحقق من صحتها وحسابها ولها فترات ثقة كافية بسبب التطور التكنولوجي والاعتماد على نطاق واسع. من المحتمل أن يستخدم مجال الطب السريري الشبكات العصبية الاصطناعية بشكل متكرر أكثر نتيجة لإجراء المزيد من الأبحاث حولها. على الرغم من الاعتراف بقيمة الذكاء الاصطناعي في هذه الصناعة، يجب على علماء الكمبيوتر والمهنيين الطبيين العمل معًا لضمان تدريب الموظفين متعددي التخصصات وتعاونهم. ويمكن للمهنيين الطبيين بعد ذلك الاستفادة من إمكانات هذه التكنولوجيا بطريقة فعالة من حيث التكلفة وعملية. تمثل ضمانات الخصوصية وأمن البيانات مشكلة كبيرة فيما يتعلق بمستقبل الذكاء الاصطناعي في الطب. على الرغم من أن "البيانات الضخمة" والحلول القائمة على التعلم الآلي قد ولدت الكثير من الإثارة في السنوات الأخيرة، إلا أن هناك حاليًا حالات قليلة جدًا توضح كيف أثر الذكاء الاصطناعي على الممارسة السريرية.

تحلل أبحاث سوق Data Bridge أنه من المتوقع أن يصل سوق تشخيص السرطان إلى قيمة 28.21 مليار دولار أمريكي بحلول عام 2029، بمعدل نمو سنوي مركب قدره 7.29٪ خلال الفترة المتوقعة. يوفر الارتفاع في حالات السرطان فرصًا للنمو في السوق. السرطان هو السبب الرئيسي الثاني للوفاة في العالم، حيث يمثل 10 ملايين حالة وفاة بحلول عام 2020. ويمثل السرطان حوالي سدس جميع الوفيات في جميع أنحاء العالم (المصدر: منظمة الصحة العالمية). في عام 2020، تم الإبلاغ عن 19.3 مليون حالة سرطان جديدة، ومن المتوقع أن يرتفع هذا العدد إلى 30.2 مليون بحلول عام 2040. ويمكن أن تعزى هذه الزيادة في حالات الإصابة بالسرطان إلى تزايد عدد كبار السن وكذلك إجمالي عدد السكان.

لمعرفة المزيد عن الدراسة، قم بزيارة:https://www.databridgemarketresearch.com/ar/reports/global-cancer-diagnostics-market


شهادات العميل