مقالات

14 ديسمبر 2022

تحول صناعة الطاقة الذي جلبه الذكاء الاصطناعي

  • أظهر بحث حديث أن أوروبا هي واحدة من أفضل المناطق في الابتكارات المتعلقة بالطاقة.
  • إحدى القوى الرئيسية وراء التحول إلى الطاقة المنخفضة الكربون هي السيارات الكهربائية.

تحلل أبحاث سوق Data Bridge أن قيمة سوق محطات شحن السيارات الكهربائية بلغت 6.97 مليار دولار أمريكي في عام 2021 ومن المتوقع أن تصل إلى 167.52 مليار دولار أمريكي بحلول عام 2029، مسجلة معدل نمو سنوي مركب قدره 48.80٪ خلال الفترة المتوقعة من 2022 إلى 2029. الشعبية المتزايدة و وقد سلط استخدام السيارات الكهربائية الضوء على الحاجة إلى تطوير البنية التحتية للشحن. على سبيل المثال، تنفق الصين والولايات المتحدة وألمانيا مبالغ كبيرة على البنية التحتية لشحن السيارات الكهربائية والبحث والتطوير من أجل تقنيات شحن أسرع وأكثر كفاءة. ABB (سويسرا)، Shell plc (المملكة المتحدة)، ChargePoint (الولايات المتحدة)، Tesla (الولايات المتحدة)، BYD (الصين)، bp Chargemaster (المملكة المتحدة)، Webasto Thermo & Comfort (ألمانيا)، Schneider Electric (فرنسا)، Blink Charging Co. (الولايات المتحدة)، Groupe Renault (فرنسا)، Phihong USA Corp. (الولايات المتحدة) من بين العديد من الشركات الأخرى هي بعض من اللاعبين الرئيسيين العاملين في السوق.

لمعرفة المزيد عن الدراسة، قم بزيارة: https://www.databridgemarketresearch.com/ar/reports/global-electric-vehicle-charging-stations-market

إحدى الخطوات الأساسية لحل المشاكل الناجمة عن الكارثة المناخية هي التحول إلى الطاقة منخفضة الكربون (LCE). ومن الممكن تجاوز حدود درجات الحرارة التي ينص عليها اتفاق باريس للمناخ إذا لم يتم خفض الانبعاثات، ولم يتم التوسع في استخدام الطاقة النظيفة. ووفقا للدراسة الثانية حول تطوير التكنولوجيات اللازمة لدعم التحول إلى أشكال الطاقة الأكثر خضرة، والتي أصدرها مكتب براءات الاختراع الأوروبي (EPO) والوكالة الدولية للطاقة (IEA)، فإن هذا هو الحال. قام المكتب الأوروبي للبراءات والوكالة الدولية للطاقة بتمشيط قواعد بيانات براءات الاختراع الدولية للعثور على أنماط في الابتكار، وحصر الحالات التي تم فيها إيداع براءات الاختراع في مكاتب متعددة، والمعروفة باسم أسر براءات الاختراع الدولية، لقياس التقدم المحرز حتى الآن (IPFs). ووفقا للورقة البحثية، "توفر بيانات براءات الاختراع هذه مؤشرات مبكرة للتقدم التكنولوجي الذي من المؤكد أنه سيؤثر على الاقتصاد، وبالتالي يمكن أن يوضح كيف يغذي الابتكار التحول في مجال الطاقة".

Growth of Low Carbon Energy

الشكل 1: النمو العالمي للطاقة منخفضة الكربون

المصدر: مكتب براءات الاختراع الأوروبي

بين عامي 2014 و2016، كان هناك تباطؤ في التوسع في IPFs للطاقة الخضراء. ولكن وفقًا لتقرير المكتب الأوروبي للبراءات/وكالة الطاقة الدولية، فإن هذه النسبة آخذة في الارتفاع مرة أخرى. بالإضافة إلى ذلك، يتزامن ارتفاع براءات الاختراع المتعلقة بـ LCE مع انخفاض في استخدام الوقود الأحفوري.

يُحدث الذكاء الاصطناعي (AI)، كما هو الحال في كل صناعة، ثورة في صناعات الطاقة والمرافق العامة. ومن أجل ضمان توفير الطاقة متى وأينما تكون هناك حاجة إليها بأقل قدر من الهدر، يتم استخدامها لتقدير الطلب والتحكم في توزيع الموارد. وهذا أمر بالغ الأهمية لقطاع الطاقة المتجددة لأن الطاقة المتجددة في كثير من الأحيان غير مناسبة للتخزين على المدى الطويل ويجب استخدامها في أقرب وقت ممكن بمجرد إنتاجها. ووفقا للمنتدى الاقتصادي العالمي، سيكون الذكاء الاصطناعي حاسما في التحول العالمي إلى الطاقة المتجددة. ستنجم الزيادة في الكفاءة عن توقعات أكثر دقة للعرض والطلب.

كما تحل النماذج اللامركزية لتوليد الطاقة وتوزيعها محل النماذج المركزية. في هذه النماذج، يتم إنتاج المزيد من الطاقة عن طريق شبكات طاقة محلية أصغر (مثل مزارع الطاقة الشمسية)، ويتطلب تنسيق تكامل هذه الشبكات خوارزميات الذكاء الاصطناعي المتطورة. تتمثل الخطة في بناء "طبقة تنسيق ذكية" تقع بين البنية التحتية للطاقة والمباني التي يستخدم فيها الأشخاص والأشياء الكهرباء.

في عام 2022، يمكننا أن نتوقع المزيد من الابتكار من الشركات الناشئة التي تستخدم الذكاء الاصطناعي بطرق جديدة. على سبيل المثال، قامت شركة Likewatt في ألمانيا بتطوير Optiwize، وهي خدمة تقوم بتقدير انبعاثات ثاني أكسيد الكربون واستهلاك الطاقة لمساعدة المستهلكين على مراقبة تأثيرات استهلاكهم للطاقة في الوقت الفعلي واتخاذ خيارات أكثر استنارة بشأن إمداداتهم من الطاقة. ولزيادة الكفاءة في إنتاج الطاقة المتجددة، تقوم شركات أخرى بإنشاء تكنولوجيا للصيانة التنبؤية. إن نظام الطاقة الأكثر تكاملاً والكهرباء مع زيادة التفاعل بين قطاعات الطاقة والنقل والصناعة والبناء ينتج عن محاولات إزالة الكربون من نظام الطاقة العالمي. كما أن الدرجات العالية من اللامركزية في قطاع الطاقة ناجمة أيضًا عن الجهود المبذولة لإزالة الكربون من إمدادات الطاقة. ومن أجل إدارة هذا النظام المتزايد التعقيد وتحسينه لأقل انبعاثات غازات الدفيئة، سيتطلب الأمر مستويات أعلى بكثير من التعاون والقدرة على التكيف من جميع الجهات الفاعلة في القطاع، بما في ذلك المستهلكين.

مع التطبيقات المحتملة التي تتراوح بين تحسين موارد الطاقة المتجددة المتغيرة ودمجها بشكل فعال في شبكة الطاقة، إلى دعم نظام توزيع الكهرباء الاستباقي والمستقل، إلى فتح مصادر إيرادات جديدة لتحقيق المرونة في جانب الطلب، فإن الذكاء الاصطناعي لديه إمكانات كبيرة لدعم وتسريع انتقال الطاقة الموثوق والأقل تكلفة. إن البحث عن مواد عالية الأداء تدعم أحدث تقنيات الطاقة والتخزين المستدامة قد يستفيد بشكل كبير من استخدام الذكاء الاصطناعي. ومع ذلك، على الرغم من إمكاناته، يُستخدم الذكاء الاصطناعي أحيانًا في قطاع الطاقة، وخاصة في البرامج التجريبية للصيانة الاستباقية للأصول. وعلى الرغم من فعاليته، إلا أن الذكاء الاصطناعي يتمتع بإمكانات أعلى بكثير لتسريع تحول الطاقة في جميع أنحاء العالم مما هو موضع تقدير الآن. فيما يلي مناقشة حول كيفية تأثير الذكاء الاصطناعي على قطاع الطاقة عبر مجموعة واسعة من التطبيقات:

Top Applications of AI in the Energy Industry

الشكل 2: أهم تطبيقات الذكاء الاصطناعي في صناعة الطاقة

  • الشبكات الذكية- ولكي تصبح الشبكات "ذكية"، يمكن الآن ربطها بأجهزة الاستشعار، وأدوات تحليل البيانات، وأنظمة تخزين الطاقة، ومنصات إدارة الطاقة، وغيرها من تكنولوجيات الطاقة. يمكن لمزودي الطاقة استخدام الشبكات الذكية لجمع البيانات حول استهلاك الطاقة من كل جهاز شبكة وإنشاء مشاريع كفاءة الطاقة لعملائهم. بالإضافة إلى ذلك، فإنه يتيح مراقبة استخدام الطاقة وتدفقاتها من قبل شركات الطاقة في الوقت الفعلي تقريبًا. وبعد ذلك، من خلال أنظمة الاستجابة للطلب الآلية التي قد تقطع الطاقة خلال ساعات الذروة، يمكن لشركات الطاقة تقليل استخدام الطاقة. ونتيجة لذلك، يمكن لكل من الأسر ومقدمي الطاقة توفير الطاقة. الشبكة الصغيرة هي شبكة كهرباء صغيرة يمكنها العمل بشكل مستقل عن الشبكة الرئيسية. يتم استخدام الذكاء الاصطناعي والتعلم الآلي بواسطة أنظمة التحكم في الشبكات الصغيرة لتحسين استخدام الطاقة والتحكم في تدفق الطاقة. نظرًا لأنها يمكن أن توفر أمن الطاقة أثناء حالات الطوارئ وتجعل دمج مصادر الطاقة المتجددة في الشبكة أسهل من شبكات الطاقة التقليدية، فإن الشبكات الصغيرة تزداد شعبيتها.
  • أمن الشبكة وإدارتها- يتم استخدام الذكاء الاصطناعي لإدارة تدفقات الطاقة داخل وبين المباني والشركات وبطاريات التخزين ومصادر الطاقة المتجددة والشبكات الصغيرة وشبكة الطاقة الرئيسية من أجل تحسين أنظمة الطاقة. وهذا يقلل من هدر الطاقة مع زيادة وعي المستهلك باستخدام الطاقة. على الرغم من تزايد شعبية مصادر الطاقة المتجددة المتقطعة مثل طاقة الرياح والطاقة الشمسية. ونتيجة لذلك، فإن مصادر الطاقة هذه ليست متاحة دائمًا عند الحاجة إليها. وبما أن شبكة الطاقة يجب أن تدير الطاقة في الوقت الفعلي عند إنشائها، فإن هذا يشكل تحديًا. يمكن لشركات الطاقة التنبؤ بموعد توفر الكهرباء المتجددة وإدارة شبكات الطاقة وفقًا لذلك بمساعدة الذكاء الاصطناعي والتعلم الآلي. تُستخدم الروبوتات أيضًا في منشآت الطاقة، وصيانة الشبكات، وتتبع إنتاج الطاقة واستهلاكها. من أجل إصلاح خطوط الأنابيب وتوربينات الرياح وغيرها من البنية التحتية للطاقة، يمكن استخدام الروبوتات. ويمكن لشركات الطاقة زيادة الكفاءة وخفض التكاليف من خلال أتمتة هذه العمليات. نظام متطور مثل الشبكة الكهربائية مفتوح للقراصنة. ومن خلال إحباط الهجمات السيبرانية قبل حدوثها، يمكن للذكاء الاصطناعي والتعلم الآلي زيادة أمن البنى التحتية للكهرباء. وللقيام بذلك، سيتم استخدام تحليلات البيانات للعثور على الاتجاهات في بيانات الطاقة التي يمكن أن تكون علامات على وجود هجوم إلكتروني. يمكن استخدام الذكاء الاصطناعي والتعلم الآلي للرد على أي هجوم إلكتروني بمجرد اكتشافه.
  • كشف سرقة الطاقة- وتكلف سرقة الكهرباء والاحتيال قطاع الطاقة والمرافق العامة ما يصل إلى 96 مليار دولار سنويا، مع خسائر تصل إلى 6 مليارات دولار تحدث في الولايات المتحدة وحدها. يُعرف السحب غير المشروع للطاقة من الشبكة بسرقة الطاقة. يُعرف التشويه المتعمد لبيانات الطاقة أو استخدام الطاقة باسم الاحتيال في مجال الطاقة. يمكن العثور على هذه الحالات الشاذة تلقائيًا ووضع علامة عليها لحلها من قبل شركات الطاقة باستخدام الذكاء الاصطناعي والتعلم الآلي. ويمكن لشركات الطاقة القيام بذلك لحماية مواردها، وخفض هدر الطاقة، وتحقيق وفورات مالية.
  • تحسين وزيادة الإنتاج- ويستخدم قطاع الطاقة أيضًا الذكاء الاصطناعي والتعلم الآلي لزيادة الإنتاج. على سبيل المثال، تستخدم شركات النفط والغاز خوارزميات التعلم الآلي لتحسين مواقع الآبار وتعزيز الإنتاج. يمكن لهذه الشركات أن تقرر مكان التنقيب عن النفط والغاز بشكل أكثر فعالية من خلال تحليل البيانات التي تم الحصول عليها من المسوحات الزلزالية وغيرها من المصادر. سيؤدي ذلك إلى تحسين كفاءة الطاقة ويؤدي إلى نظام طاقة أكثر نظافة وفعالية سيكون من الأسهل على مزودي الطاقة إدارته.
  • تخزين الطاقة والتحليلات التنبؤية- وبحلول عام 2030، من المتوقع أن يتضاعف سوق تخزين الطاقة بمقدار 20 ضعفًا. يمكن دمج تقنيات تخزين الطاقة الذكية في شبكة الطاقة لتحسين فعالية إدارة الطاقة. يمكن لشركات الكهرباء الآن توفير الطاقة عند الحاجة إليها حتى لو كانت إمداداتها الحالية من الطاقة غير كافية عن طريق استخدام تخزين الطاقة لبناء محطات طاقة افتراضية. وهذا يقلل من حاجة شركات الطاقة لبناء محطات طاقة جديدة. يمكن التنبؤ بالتغيرات المستقبلية في الطلب على الطاقة باستخدام التحليلات التنبؤية. ويمكن بعد ذلك إنشاء البنية التحتية المناسبة للتخطيط للمستقبل وتوفير احتياجات الطاقة. يمكن لشركات الطاقة أيضًا التنبؤ عندما يكون من المرجح أن تتعطل الآلة أو قطعة من المعدات من خلال استخدام التحليلات التنبؤية. ولا يساعد هذا في منع انقطاع التيار الكهربائي غير المتوقع فحسب، بل يساعد أيضًا الشركات على توفير المال من خلال تمكينها من الاستعداد لاستبدال أصول الطاقة باهظة الثمن والأساسية والابتعاد عن مهام الصيانة غير المتوقعة.
  • إشراك العملاء- بدأ قطاع الطاقة في تبني الذكاء الاصطناعي والتعلم الآلي للتفاعل مع العملاء. يمكن لشركات الطاقة أن تقدم للعملاء معلومات مصممة خصيصًا وفقًا لمتطلباتهم من خلال استخدام الذكاء الاصطناعي والتعلم الآلي. ويستلزم ذلك تحليل بيانات العميل لفهم استخدامهم للطاقة ومن ثم تزويدهم بمعلومات حول كيفية تغيير عادات الاستخدام الخاصة بهم لاستهلاك طاقة أقل.
  • تجارة الطاقة- ولأن الطاقة يجب أن تعطى على الفور، فإن تداول الطاقة يختلف عن السلع الأخرى. يواجه متداولو الطاقة تحدياً بسبب هذا، ولكن هناك أيضاً فرصة لأن أسواق الطاقة تصبح أكثر سيولة. من خلال التنبؤ بالطلب على الطاقة ومنح المتداولين إمكانية الوصول إلى بيانات الأسعار في الوقت الفعلي، يمكن استخدام الذكاء الاصطناعي والتعلم الآلي لتحسين كفاءة سوق تداول الطاقة. يمكن لمتداولي الطاقة بعد ذلك استخدام هذه المعلومات لاتخاذ خيارات أكثر استنارة حول وقت شراء وبيع الطاقة. تم تطوير اتفاقيات شراء الطاقة (PPAs)، وهي عقد مالي بين مشتري وبائعي الطاقة، باستخدام تقنية blockchain. تعد هذه العقود أكثر فعالية بفضل تقنية blockchain لأنها تعمل على تسريع المعاملات، وتكلفة استخدامها أقل من منصات PPA التقليدية، وتعتمد على منصة آمنة للغاية.

من المتوقع أن ينمو سوق موصلات الطاقة المتجددة بمعدل 6.10٪ خلال الفترة المتوقعة من 2021 إلى 2028. يقدم تقرير أبحاث سوق Data Bridge عن سوق موصلات الطاقة المتجددة تحليلاً ورؤى فيما يتعلق بعوامل مثل الاعتماد المتزايد لمصادر الطاقة المتجددة. تعمل تكاليف التركيب المرتفعة واستنزاف الموارد الطبيعية كعوائق سوقية لموصلات الطاقة المتجددة في فترة التوقعات المذكورة أعلاه. ستصبح المستويات المتزايدة للاحتباس الحراري والزيادة السريعة في عدد السكان التحدي الأكبر في نمو سوق موصلات الطاقة المتجددة في فترة التوقعات المذكورة أعلاه. يتم تقسيم سوق موصلات الطاقة المتجددة على أساس الأنواع ومصدر الطاقة والتطبيق والمستخدم النهائي. ستهيمن منطقة آسيا والمحيط الهادئ على سوق موصلات الطاقة المتجددة بسبب زيادة إصلاحات الطاقة في المنطقة إلى جانب العدد المتزايد لقنوات التوزيع، بينما تتوقع أمريكا الشمالية أن تنمو في الفترة المتوقعة 2021-2028 بسبب انتشار السياسات المواتية و تزايد معايير المحفظة المتجددة.

لمعرفة المزيد عن الدراسة، قم بزيارة: https://www.databridgemarketresearch.com/ar/reports/global-renewable-energy-connector-market

كيف سيعمل الذكاء الاصطناعي على تسريع وتيرة تحول الطاقة؟

وكما ورد بشكل لا لبس فيه في التقييم الجديد للفريق الحكومي الدولي المعني بتغير المناخ، هناك حاجة ماسة إلى اتخاذ المزيد من الإجراءات لمنع التأثيرات المناخية الكارثية طويلة المدى. ولا يزال الوقود الأحفوري يوفر أكثر من 80% من الطاقة في العالم، وبالتالي فإن أي مبادرة يجب أن تركز على قطاع الطاقة. ولحسن الحظ، فإن نظام الطاقة يتغير بالفعل؛ يتوسع إنتاج الطاقة المتجددة بسرعة بسبب انخفاض التكاليف وزيادة اهتمام المستثمرين. ومع ذلك، لم يتبق الكثير من الوقت، ولا يزال حجم وتكلفة إزالة الكربون من نظام الطاقة بأكمله هائلاً. وكانت أغلب الجهود الانتقالية في صناعة الطاقة، حتى هذه اللحظة، تتركز على الأجهزة: البنية الأساسية الجديدة المنخفضة الكربون والتي ستحل محل الأنظمة القديمة كثيفة الكربون. هناك أداة أخرى حاسمة للتحول، وهي التقنيات الرقمية من الجيل التالي، وخاصة الذكاء الاصطناعي، التي لم تحظ إلا بقدر ضئيل للغاية من الاهتمام والتمويل. تتمتع هذه التقنيات القوية بالقدرة على تسريع تحول الطاقة من خلال اعتمادها على نطاقات أسرع من حلول الأجهزة الجديدة. هناك ثلاثة اتجاهات رئيسية تدفع بإمكانات الذكاء الاصطناعي لتسريع عملية تحول الطاقة:

  • إن عمليات إزالة الكربون التاريخية بدأت للتو في الصناعات كثيفة الاستهلاك للطاقة، بما في ذلك الطاقة والنقل والصناعات الثقيلة والمباني، وذلك بفضل الضغوط الشعبية المتزايدة من أجل خفض سريع لانبعاثات ثاني أكسيد الكربون. هذه التحولات واسعة النطاق. ووفقا لـ BloombergNEF، ستكون هناك حاجة إلى ما بين 92 تريليون دولار و173 تريليون دولار من الاستثمارات في البنية التحتية لتحقيق صافي انبعاثات صِفر بحلول عام 2050، فقط في قطاع الطاقة. ولذلك، فإن الزيادات المتواضعة في الطاقة النظيفة والمرونة أو الكفاءة أو القدرة الصناعية المنخفضة الكربون يمكن أن تؤدي إلى تريليونات الدولارات من القيمة والمدخرات.
  • يتطور قطاع الطاقة ليصبح الركيزة الأساسية لإمدادات الطاقة في العالم حيث تدعم الكهرباء المزيد من الصناعات والتطبيقات. ولضمان إدارة شبكات الطاقة بشكل آمن وموثوق، فإن زيادة نشر الطاقة المتجددة سوف يعني توفير المزيد من الطاقة من مصادر متفرقة (مثل الطاقة الشمسية وطاقة الرياح)، مما يزيد من ضرورة التنبؤ والتنسيق والاستهلاك المرن.
  • إن التوسع السريع في توليد الطاقة الموزعة، والتخزين الموزع، وتحسين قدرات الاستجابة للطلب، مدفوع بالتحول إلى أنظمة الطاقة المنخفضة الكربون. ويجب تنسيق هذه القدرات وتكاملها من خلال شبكات طاقة أكثر ارتباطًا بالشبكات.

ويواجه نظام الطاقة والقطاعات كثيفة الاستهلاك للطاقة عقبات استراتيجية وتشغيلية هائلة في التعامل مع هذه الاتجاهات. يمكن للذكاء الاصطناعي أن يساعد أصحاب المصلحة في نظام الطاقة في تحديد الأنماط والرؤى في البيانات، والتعلم من الخبرة وتحسين أداء النظام بمرور الوقت، والتنبؤ بالنتائج المحتملة للمواقف المعقدة والمتعددة المتغيرات ووضع نماذج لها من خلال إنشاء طبقة تنسيق ذكية عبر التوليد والنقل والاستخدام. من الطاقة. تشهد مجالات متعددة من تحول الطاقة بالفعل فوائد ملموسة من الذكاء الاصطناعي، بما في ذلك التنبؤ بالطاقة المتجددة، وعمليات الشبكة وتحسينها، وأصول الطاقة الموزعة، وتنسيق إدارة جانب الطلب، وابتكار المواد واكتشافها. على الرغم من أن استخدام الذكاء الاصطناعي في قطاع الطاقة يبدو واعدًا حتى الآن، إلا أنه لم يكن هناك الكثير من الابتكار أو القبول على نطاق واسع. وهذا يوفر فرصة رائعة لتسريع التحول إلى نظام الطاقة المستقبلي الذي نحتاجه، وهو نظام خالٍ من الانبعاثات وفعال للغاية ومترابط. إن قدرة الذكاء الاصطناعي على تسريع التحول العالمي للطاقة أكبر بكثير مما كان يعتقد سابقا، ولكن هذه الإمكانية لا يمكن تحقيقها إلا إذا تمت زيادة ابتكار الذكاء الاصطناعي واعتماده والتعاون على مستوى الصناعة.

كيف يعتبر الذكاء الاصطناعي مفتاحًا لمرونة شبكات الطاقة المتجددة؟

  • ومن أجل إدارة الشبكات اللامركزية طوال فترة التحول العالمي إلى الطاقة المتجددة، ستكون هناك حاجة إلى تكنولوجيا الذكاء الاصطناعي
  • يمكن للذكاء الاصطناعي تحسين استخدام الطاقة وتخزينها لخفض التكاليف وتحقيق التوازن بين احتياجات العرض والطلب على الكهرباء في الوقت الفعلي
  • وسوف تكون حوكمة التكنولوجيا مطلوبة لتأمين مصادر كهربائية مرنة، وتشجيع الابتكار، وإضفاء الطابع الديمقراطي على القدرة على الوصول إليها

ومن أجل حل تحديات اليوم باستخدام التكنولوجيا من الماضي، تم توجيه دعوات للإنفاق الحكومي على البنية التحتية للشبكة لتحديث خطوط النقل الطويلة من مصدر إمداد الطاقة المركزي. يوجد بالفعل بديل متفوق وأكثر تقدمية هو الذكاء الاصطناعي (AI) الذي يستفيد من مصادر الطاقة المتجددة الموزعة. لذلك، يعد الذكاء الاصطناعي عنصرًا أساسيًا في تعزيز الطاقة المتجددة بطريقتين:

AI's Assistance in Promoting Renewable Energy

الشكل 3: مساعدة الذكاء الاصطناعي في تعزيز الطاقة المتجددة

  • زيادة التعقيد في الطاقة المتجددة- سيتم توليد المزيد من الطاقة من المصادر الموزعة والمتجددة عندما يصبح العالم أكثر كهربة. ولنتأمل هنا البطاريات، والألواح الشمسية الخاصة، ومزارع الرياح، والشبكات الصغيرة. وحتى لو كانت مفيدة للاستدامة، فإنها ستؤدي إلى تعقيد البنية التحتية للطاقة في جميع أنحاء العالم. سيكون من الضروري إجراء توازن دقيق للتوفيق بين العرض والطلب دون تركيع الشبكة على ركبتيها على مدى السنوات العشر إلى الخمس عشرة المقبلة نتيجة الاعتماد المتزايد على السيارات الكهربائية، وكهربة أنظمة التدفئة، وانتشار موارد الطاقة الموزعة. (DERs) مثل توربينات الرياح والألواح الشمسية. استخدم أستراليا كمثال. بحلول عامي 2030 و2050، من المتوقع أن تستخدم الطاقة الشمسية 30% و60% من المباني السكنية والتجارية والصناعية في البلاد. وتحدث مواقف مماثلة في مختلف أنحاء العالم، حيث يقوم المزيد من المستهلكين التجاريين والحكوميين والسكنيين بإنتاج الطاقة الخاصة بهم باستخدام الألواح الشمسية، أو تخزينها في بطاريات لاستخدامها في السيارات الكهربائية، أو إعادتها إلى الشبكة. تظهر توقعاتنا أنه بحلول عام 2030، سيكون هناك 89 مليون جهاز لتخزين الطاقة على الشبكة في أوروبا، مقارنة بالتقدير الحالي البالغ 36 مليونًا (انظر الصورة أدناه). قد تصبح الشبكات الكهربائية فوضوية إذا قامت ملايين الأجهزة الفردية بنشر وتنزيل الكهرباء. بمعنى آخر، ستحتاج المرافق إلى تغيير نماذج أعمالها نظرًا لأن الاعتماد على مرفق واحد لإنتاج ونقل الكهرباء آخذ في التضاؤل. قريباً، لن تكون مصدر الطاقة الوحيد؛ بدلاً من ذلك، سيُطلب منهم الحفاظ على توازن الشبكة عن طريق نقل الإلكترونات من مصادر وأنظمة تخزين مختلفة لتوفير الطاقة عند الحاجة إليها ثانية تلو الأخرى بكفاءة.
  • الذكاء الاصطناعي لتحقيق التوازن بين ملايين الشبكات- يمكن لمصادر الطاقة اللامركزية نقل أي كهرباء إضافية تولدها إلى الشبكة باستخدام برنامج الذكاء الاصطناعي، ويمكن للمرافق توجيه تلك الكهرباء حيثما تكون مطلوبة. وعلى غرار تخزين الطاقة، الذي يمكنه الاحتفاظ بالطاقة الإضافية عندما يكون الطلب منخفضًا في المنازل والمكاتب والسيارات وغيرها من الهياكل، يمكن للذكاء الاصطناعي استخدام تلك الطاقة عندما يكون توليدها غير كافٍ أو مستحيلًا. هناك العديد من القطع المتحركة في هذا النظام؛ وبالتالي، هناك حاجة إلى التنسيق والتنبؤ والتحسين للحفاظ على استقرار الشبكة. تشبه الأداة المساعدة قائد الفرقة الموسيقية الذي يحافظ على الأوركسترا في الوقت المناسب، حيث يقوم الذكاء الاصطناعي بتأليف السيمفونية في الوقت الفعلي إذا كنت تتخيل DERs كموسيقيين فرديين. ونتيجة لذلك، يمكن للنظام القائم على الذكاء الاصطناعي أن يغير اللعبة. إن الشبكة الأكثر مرونة ومرونة عند حدوث أحداث غير متوقعة هي نتيجة التحول من نظام ثقيل البنية التحتية إلى نظام يتمحور حول الذكاء الاصطناعي. أصبح التنبؤ والتحكم ممكنين الآن في ثوانٍ بدلاً من أيام.

وفيما يتعلق بموارد الطاقة اللامركزية، يتعين على المرافق وصناع القرار والهيئات التنظيمية أن تبدأ في النظر في الأدوار المنوطة بكل منها. وستكون إدارة وتنسيق خليط منتجي الطاقة الموزعين أمرًا ضروريًا. يمكن أن تأخذ المرافق زمام المبادرة في هذه الحالة لأنها تتعامل مع عدد متناقص من العملاء الذين يشترون الكهرباء حيث يبدأ المزيد من المنازل والشركات في إنتاج الطاقة الخاصة بهم بفضل الألواح الشمسية على الأسطح والتقنيات المماثلة. ليس هناك وقت لنضيعه لأن تغير المناخ سيستمر في جلب المزيد من الظروف المناخية المتطرفة إلى العالم. ومن المرجح أن يؤدي الوضع الاقتصادي الحالي والمناقشات السياسية المطولة مثل تلك المتوقعة في الولايات المتحدة إلى انخفاض الاستثمارات الضرورية. إن أفضل مسار للعمل هو عدم الاستثمار في الشبكات المركزية بشبكتها من الكابلات والمحولات الطويلة؛ وبدلا من ذلك، ينبغي للحكومات أن تضع خططا لإنشاء شبكة حيث تنتج المجتمعات والمباني الكهرباء الخاصة بها، والتي تتم إدارتها بعد ذلك في الوقت الحقيقي عن طريق البرمجيات. وينبغي لواضعي السياسات أن يأخذوا في الاعتبار التمويل العام لإنتاج الطاقة المتجددة، فضلاً عن تقديم حوافز لتوليد المزيد من الطاقة المتوزعة في الصناعات الخاصة والمنازل. ومن أجل ضمان قابلية التشغيل البيني، والشفافية، والوصول العادل إلى جميع أنحاء بيئة الطاقة، نحتاج إلى حوكمة معتمدة عالميًا لبرامج الذكاء الاصطناعي.

خاتمة

إن اتباع نهج استباقي وتعاوني لإدارة التكنولوجيا المتعلقة بالذكاء الاصطناعي سيكون مفيدًا لقطاع الطاقة. وستكون السنوات المقبلة مهمة لتشجيع الابتكار في هذا المجال وإضفاء الطابع الديمقراطي على الوصول إلى التكنولوجيات المبتكرة المنخفضة الكربون في جميع أنحاء نظام الطاقة. إذا لم يتم قبولها مسبقًا، فيجب على الصناعة تنفيذ معايير البيانات المشتركة كشرط لذلك والرقمنة بشكل عام. قد يتخذ التعاون المتزايد بين الجهات الفاعلة في صناعة الطاقة شكل مشاريع بحث وتطوير مشتركة، وتبادل أفضل تقنيات الممارسات لوضع مفاهيم الذكاء الاصطناعي موضع التنفيذ، وتقديم أمثلة الاستخدام. ويمكن للتعاون أيضًا أن يعزز الثقة بين منشئي تكنولوجيا الذكاء الاصطناعي والمستهلكين والمنظمين وغيرهم من أصحاب المصلحة الذين يتفاعلون مع أنظمة الذكاء الاصطناعي. يجب على منظمي ومشغلي الشبكات النظر في إمكانات مجموعة متنوعة من التقنيات الرقمية (مثل التعلم الآلي، والحوسبة الكمومية، وتكنولوجيا blockchain، من بين أمور أخرى) لتعزيز طريقة تشغيل الشبكات حيث أصبحت إدارة الشبكات وتشغيلها أكثر تعقيدًا، لا سيما على مستوى العالم. مستوى شبكة التوزيع تنشأ الحاجة إلى إعادة التفكير في إدارة الشبكة وإتاحة الفرصة لتطوير تصميمات جديدة وأكثر لامركزية للوصول إلى الشبكة وقرارات التشغيل والإدارة مع قيام نظام الطاقة بإزالة الكربون وتحقيق اللامركزية. ينبغي استبدال طريقة إدارة الأوامر والتحكم اليدوية التقليدية (مع مشغل النظام المركزي) باتخاذ قرارات لا مركزية مدعومة بالتكنولوجيا، مما يتيح اتخاذ قرارات أسرع وإضافة أصول موزعة أصغر تلقائيًا إلى الشبكة (باستخدام، على سبيل المثال، blockchain). والهوية الرقمية والعقود الذكية). يمكن للحكومات أن تأمر أو تقدم حوافز للهيئات العامة والصناعية لإدارة وتمويل قواعد البيانات المركزية للبيانات الصناعية كجزء من هذا النشر العادل للبيانات. ستسمح مجموعات البيانات هذه بتدريب خوارزميات الذكاء الاصطناعي وربما تقلل من تحيزات الخوارزميات التي تنتج غالبًا عن البيانات الرديئة أو المتفرقة.

أدى ارتفاع الطلب على الأنظمة الفعالة والمتينة للطاقة إلى زيادة الطلب على أنظمة حصاد الطاقة. تحلل أبحاث سوق Data Bridge أن سوق نظام حصاد الطاقة سيظهر معدل نمو سنوي مركب قدره 10.04٪ للفترة المتوقعة 2021-2028. وهذا يعني أن القيمة السوقية الحالية سترتفع إلى 1,042.5 مليون دولار أمريكي بحلول عام 2028. ونظام حصاد الطاقة هو التكنولوجيا التي تحول الطاقة من البيئة إلى طاقة كهربائية قابلة للاستخدام. يستخرج هذا النظام كميات صغيرة من الطاقة من البيئة التي كانت تُفقد على شكل حرارة أو ضوء أو صوت أو اهتزاز. تهيمن أمريكا الشمالية على السوق بسبب زيادة اعتماد وتطبيق أنظمة حصاد الطاقة في المباني والأجهزة المنزلية. كما أدى النمو في قطاع الصناعة والسيارات إلى زيادة نمو السوق عبر دول هذه المنطقة. والولايات المتحدة هي المساهم الأكبر هنا.

لمعرفة المزيد عن الدراسة، قم بزيارة: https://www.databridgemarketresearch.com/ar/reports/global-energy-harvesting-system-market


شهادات العميل