科罗拉多大学博尔德分校的研究人员在将先进的计算机模拟与人工智能相结合方面迈出了重要一步,试图预测和检测电子设备故障,例如手机晶体管故障。
这项研究由航空工程师兼物理学家 Sanghamitra Neogi 领导,发表在《npj 计算材料》杂志上。Neogi 和其他研究人员绘制了由原子组成的小构件的物理图谱,然后使用机器学习技术来估计相同的构件如何构建更大的结构。“这有点像通过观察一块乐高积木来预测一座大得多的城堡的强度。我们试图了解包含数十亿个原子的设备的物理原理,”Ann 和 HJ Mead 航空航天工程科学系助理教授 Neogi 说。
这一探索可能会对我们日常生活中的电子产品带来福音,从电动汽车和手机到新兴的量子计算机。Neogi 表示,有朝一日,工程师们可以使用该团队的方法来预测电子元件设计中的缺陷。该项目是 Neogi 更广泛关注的一部分,该研究旨在研究原子运动等微小物体的世界如何帮助人们制造新的、更高效的计算机。“我们的方法让我们在制造设备之前就能提前知道设备将如何工作,而不是等待数年才能发现设备故障的原因,”Neogi 说。