Global Feature Extraction Market, By Software Tool (Facial Expression Recognition, Biosensing Tools and Apps, Speech and Voice Recognition, Gesture and Posture Recognition), Application Area (Medical Emergency; Marketing and Advertising; Law Enforcement, Surveillance, and Monitoring; Entertainment and Consumer Electronics; Other Application Areas), Service (Storage and Maintenance, Consulting and Integration), End User (Enterprises, Defence and Security Agency, Commercial, Industrial, Other End Users), Country (U.S., Canada, Mexico, Brazil, Argentina, Rest of South America, Germany, Italy, U.K., France, Spain, Netherlands, Belgium, Switzerland, Turkey, Russia, Rest of Europe, Japan, China, India, South Korea, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific, Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa) Industry Trends and Forecast to 2028
Get Exclusive Sample Copy of this Report Here
Market Analysis and Insights : Global Feature Extraction Market
Feature extraction market is expected to reach USD 29,227.81 million by 2028 witnessing market growth at a rate of 38.60% in the forecast period of 2021 to 2028. Data Bridge Market Research report on feature extraction market provides analysis and insights regarding the various factors expected to be prevalent throughout the forecast period while providing their impacts on the market’s growth.
Feature extraction begins from an initial collection of calculated data in machine learning, pattern recognition, and image processing and constructs derived values (features) intended to be insightful and non-redundant, enabling the subsequent steps of learning and generalisation, and in some cases leading to better human interpretations. Extraction of features is connected to reducing dimensionality.
Increasing demand for speech-based emotion detection systems to analyse emotional states, growing need for high operational excellence, increased resource utilization, and enhanced productivity, rising inclination toward industry-specific solutions, rising number of government initiatives to leverage benefits of emotion detection and recognition technology, rising need for socially intelligent artificial agents are some of the major as well as vital factors which will likely to augment the growth of the feature extraction market in the projected timeframe of 2021-2028. On the other hand, growing partnerships and widening ecosystems along with rising number of technological advancement in internet of things, artificial intelligence, machine learning and deep learning which will further contribute by generating massive opportunities that will lead to the growth of the feature extraction market in the above mentioned projected timeframe.
High production cost of emotion detection and recognition systems along with rising concern related to interoperability which will likely to act as market restraints factor for the growth of the feature extraction in the above mentioned projected timeframe. Rising threat of privacy and data breach, complex systems for emotion recognition along with lack of knowledge and awareness which will become the biggest and foremost challenge for the growth of the market.
This feature extraction market report provides details of new recent developments, trade regulations, import export analysis, production analysis, value chain optimization, market share, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on feature extraction market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
Global Feature Extraction Market Scope and Market Size
Feature extraction market is segmented on the basis of software tool, service, application area and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.
- Based on software tool, the feature extraction market has been segmented into facial expression recognition, biosensing tools and apps, speech and voice recognition, gesture and posture recognition.
- On the basis of service, the feature extraction market has been segmented into storage and maintenance, consulting and integration.
- On the basis of application area, the feature extraction market has been segmented into medical emergency; marketing and advertising; law enforcement, surveillance, and monitoring; entertainment and consumer electronics; and other application areas.
- Feature extraction has also been segmented on the basis of end user into enterprises, defence and security agency, commercial, industrial, and other end users.
Feature Extraction Market Country Level Analysis
Feature extraction market is analysed and market size, volume information is provided by country, software tool, service, application area and end user as referenced above.
The countries covered in the feature extraction market report are U.S., Canada and Mexico in North America, Brazil, Argentina and Rest of South America as part of South America, Germany, Italy, U.K., France, Spain, Netherlands, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA).
North America will dominate the feature extraction market due to the growing number of research and development activities along with prevalence of various market players in the region while Asia-Pacific region will expect to grow in the feature extraction market during the forecast period of 2021-2028 due to the growing number of technological advancements along with surging levels of investment for the growth of the infrastructure in the region.
The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points like down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.
Competitive Landscape and Feature Extraction Market Share Analysis
Feature extraction market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, regional presence, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies’ focus related to feature extraction market.
The major players covered in the feature extraction market report are Apple Inc.; Google; Microsoft; IBM Corporation; Affectiva; Vocalis Health.; Noldus Information Technology bv.; Tobii Technology AB.; NEC Corporation; Sentiance NV.; NVISO SA.; Cipia Vision Ltd.; Ayonix Corporation; Cognitec Systems GmbH; Sightcorp.; Crowd Emotion Limited; Kairos AR, Inc.; Eyeris; iMotions A/S; SkyBiometry; among other domestic and global players. Market share data is available for global, North America, Europe, Asia-Pacific (APAC), Middle East and Africa (MEA) and South America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.
SKU-