Global Ai Store Manager Tool Market
시장 규모 (USD 10억)
연평균 성장률 : %
예측 기간 |
2024 –2031 |
시장 규모(기준 연도) |
USD 7.34 Million |
시장 규모(예측 연도) |
USD 50.51 Million |
연평균 성장률 |
|
주요 시장 플레이어 |
>글로벌 AI 매장 관리 도구 시장, 솔루션별(AI 매장 관리 소프트웨어, 서비스), 애플리케이션별(재고 관리, POS 시스템, 직원 일정 관리, 작업 관리 등), 기업 규모별(소규모 사무실(직원 1~9명), 소기업(직원 10~99명), 중견기업(직원 100~499명), 대기업(직원 500~999명), 초대형기업(직원 1,000명 이상)), 최종 사용자(슈퍼마켓, 전문 소매점, 식료품점, 소매 약국 등) - 업계 동향 및 2031년까지의 예측.
AI Store Manager 도구 시장 분석 및 규모
AI Store Manager Tool은 매장 관리의 다양한 측면을 간소화하도록 맞춤화된 고급 애플리케이션을 제공하여 소매 운영에 혁신을 일으킵니다. 이 애플리케이션은 재고 관리, POS 시스템, 직원 일정, 작업 관리 등을 아우르며, 소매업체에게 운영 효율성을 높이고, 리소스 할당을 최적화하고, 고객 경험을 향상시키는 효율적인 솔루션을 제공합니다. 이 도구 는 인공 지능 의 힘을 결합하는 기능을 통해 예측 분석 , 개인화된 추천 및 실시간 통찰력을 제공하여 오늘날의 역동적인 시장 환경에서 소매업체가 운영하는 방식을 근본적으로 재구성합니다. 이 도구의 중요성은 비용 절감을 촉진하고, 의사 결정 프로세스를 개선하고, 소매 관리의 혁신을 촉진하는 능력에 있으며, 궁극적으로 기업이 끊임없이 진화하는 산업에서 경쟁력을 유지하고 민첩하게 대응할 수 있도록 합니다.
Data Bridge Market Research는 2023년에 734만 달러였던 글로벌 AI 매장 관리자 도구 시장이 2031년까지 5,051만 달러로 급증할 것이며 예측 기간 동안 23.9%의 CAGR을 보일 것으로 분석했습니다. 시장 가치, 성장률, 세분화, 지리적 범위, 주요 업체와 같은 시장 시나리오에 대한 통찰력 외에도 Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 심층적인 전문가 분석, 지리적으로 표현된 회사별 생산 및 용량, 유통업체 및 파트너의 네트워크 레이아웃, 자세하고 업데이트된 가격 추세 분석, 공급망 및 수요의 적자 분석이 포함됩니다.
보고 범위 및 시장 세분화
보고서 메트릭 |
세부 |
예측 기간 |
2024년부터 2031년까지 |
기준 연도 |
2023 |
역사적 연도 |
2022 (2016-202 맞춤형) |
양적 단위 |
매출은 10억 달러, 볼륨은 단위, 가격은 10억 달러 |
다루는 세그먼트 |
솔루션(AI 매장 관리자 소프트웨어 및 서비스), 애플리케이션(재고 관리, POS 시스템, 직원 스케줄링, 작업 관리 등), 기업 규모(소규모 사무실(직원 1~9명), 소규모 기업(직원 10~99명), 중견 기업(직원 100~499명), 대규모 기업(직원 500~999명), 초대규모 기업(직원 1,000명 이상)), 최종 사용자(슈퍼마켓, 전문 소매점, 식료품점, 소매 약국 등), |
적용 국가 |
미국, 캐나다, 멕시코, 브라질, 아르헨티나, 남미 기타 지역, 독일, 이탈리아, 영국, 프랑스, 스페인, 네덜란드, 벨기에, 스위스, 터키, 러시아, 유럽 기타 지역, 일본, 중국, 인도, 한국, 호주, 싱가포르, 말레이시아, 태국, 인도네시아, 필리핀, 아시아 태평양 기타 지역, 사우디 아라비아, UAE, 남아프리카, 이집트, 이스라엘, 중동 및 아프리카 기타 지역 |
시장 참여자 포함 |
RetailAI Solutions(미국), StoreGenie Technologies(캐나다), ShopMind AI(미국), OmniRetail AI(영국), StoreIQ Solutions(호주), IntelliStore Solutions(독일), AI Retail Manager(프랑스), StoreSense AI(싱가포르), SmartStore Solutions(네덜란드), AI-StoreTech(일본) |
시장 기회 |
|
시장 정의
AI Store Manager Tool은 인공 지능의 힘을 활용하여 리테일 관리를 혁신하도록 설계된 정교한 소프트웨어 솔루션입니다. 재고 관리, POS 시스템, 직원 일정, 작업 관리 등을 포함하여 매장 운영을 간소화하도록 맞춤화된 애플리케이션과 기능 모음을 포함합니다. AI 알고리즘을 활용하여 이러한 도구를 사용하면 리테일러가 데이터 기반 의사 결정을 내리고, 운영 효율성을 높이고, 리소스 할당을 최적화하고, 고객 경험을 향상시킬 수 있습니다. 예측 분석, 개인화된 권장 사항 및 실시간 통찰력을 통해 AI Store Manager Tools는 리테일러가 진화하는 시장 역학에 적응하고, 수익성을 개선하고, 빠르게 변화하는 리테일 환경에서 경쟁력을 유지할 수 있도록 지원합니다.
AI Store Manager 도구 시장 동향
운전자
- 소매 전자상거래의 성장
전자상거래 활동의 급증은 재고 관리, 가격 책정, 프로모션과 같은 매장 관리 업무를 자동화하고 최적화할 수 있는 도구에 대한 수요를 창출합니다. AI 기반 매장 관리자 도구는 데이터 기반 통찰력과 권장 사항을 제공하여 이러한 과제를 해결할 수 있습니다.
- 향상된 운영 효율성에 대한 요구 증가
향상된 운영 효율성에 대한 요구가 증가하면서 글로벌 AI 매장 관리자 도구 시장이 성장하는 데 주요 원동력이 되었습니다. 기업이 점점 더 역동적인 시장 환경에서 경쟁력을 유지하기 위해 노력함에 따라 AI 기반 솔루션은 운영을 간소화하고, 리소스 할당을 최적화하고, 의사 결정 프로세스를 개선하는 탁월한 기능을 제공합니다. 고급 알고리즘과 데이터 분석을 활용하여 AI 매장 관리자 도구는 리테일러가 일상적인 작업을 자동화하고, 소비자 선호도를 예측하고, 재고 관리를 최적화하여 궁극적으로 생산성을 높이고 비용을 절감할 수 있도록 합니다. 결과적으로 조직이 효율성 향상을 우선시함에 따라 AI 매장 관리자 도구에 대한 수요가 급증하여 상당한 시장 확장을 촉진할 것으로 예상됩니다.
- 급증하는 노동비
증가하는 노동 비용은 글로벌 AI 매장 관리자 도구 시장의 성장을 촉진하는 중요한 원동력으로 부상하고 있습니다. 기업이 운영 비용을 최적화해야 하는 압력이 커짐에 따라 AI 기반 솔루션은 전통적으로 인간 노동으로 처리하던 다양한 작업을 자동화하여 매력적인 대안을 제공합니다. 재고 관리, 수요 예측, 고객 서비스와 같은 작업에 AI 알고리즘을 활용함으로써 리테일러는 운영 효율성과 수익성을 개선하는 동시에 증가하는 노동 비용의 영향을 완화할 수 있습니다. 결과적으로 기업이 증가하는 노동 비용으로 인한 과제를 해결할 혁신적인 방법을 모색함에 따라 AI 매장 관리자 도구에 대한 수요가 급증할 것으로 예상되며, 이를 통해 시장 성장을 촉진할 것입니다.
기회
- 개인화된 고객 경험에 대한 수요 증가
개인화된 고객 경험에 대한 수요가 증가함에 따라 글로벌 AI 매장 관리자 도구 시장에 큰 기회가 생깁니다. 소비자가 리테일러에게 맞춤형 상호작용과 추천을 기대하는 경향이 커지면서 AI 기반 솔루션은 대규모로 개인화된 경험을 제공하는 데 중요할 수 있습니다. AI 매장 관리자 도구는 고급 알고리즘을 활용하여 고객 데이터, 선호도 및 행동을 분석하여 리테일러가 맞춤형 제품 추천, 프로모션 및 마케팅 메시지를 제공할 수 있도록 합니다. 관련성 있고 시기적절한 경험을 제공하는 AI 매장 관리자 도구는 고객 만족도와 충성도를 높일 뿐만 아니라 리테일러의 매출과 수익을 증가시킵니다. 이 기회를 통해 AI 매장 관리자 도구 공급업체는 고객에게 뛰어난 개인화된 경험을 제공하여 경쟁적인 시장 환경에서 차별화를 추구하는 리테일러를 위한 전략적 파트너로 자리 매김할 수 있습니다 .
- 사물 인터넷(IoT) 장치와의 통합
AI와 사물 인터넷(IoT) 기기의 통합은 글로벌 AI 매장 관리자 도구 시장에 중요한 기회를 제공합니다. IoT 센서와 데이터 분석의 힘을 활용하여 AI 기반 매장 관리자 도구는 고객 행동, 재고 관리 및 운영 효율성에 대한 전례 없는 통찰력을 제공할 수 있습니다. 이러한 통합을 통해 리테일러는 프로세스를 간소화하고, 고객 경험을 개선하고, 매출 성장을 촉진할 수 있습니다. 결과적으로 AI와 IoT의 융합은 AI 매장 관리자 도구의 확장 및 발전에 엄청난 잠재력을 제공하여 현대 리테일 환경에 필수적인 솔루션으로 자리 매김합니다.
제약/도전
- 숙련된 인력 부족
AI 기반 솔루션을 구현하고 효과적으로 활용하려면 데이터 분석, 머신 러닝, 소프트웨어 개발 등의 전문 기술이 필요합니다. 그러나 특히 리테일 부문에서 이러한 분야에 능숙한 전문가가 부족합니다. AI Store Manager Tools의 기능을 이해하고 활용할 수 있는 숙련된 인력이 없다면 리테일러는 이러한 솔루션에서 파생된 가치를 극대화하는 데 어려움을 겪을 수 있습니다. 게다가 AI의 기술적 발전은 최신 개발에 발맞추기 위해 지속적인 교육과 업스킬링이 필요하기 때문에 기술 격차를 더욱 심화시킵니다. 이러한 과제를 해결하려면 교육 기관, 정부 기관, 기업을 포함한 업계 이해 관계자가 교육 프로그램, 인증 및 인재 개발 이니셔티브에 투자하여 리테일 관리에서 AI의 힘을 활용하는 데 필요한 기술을 갖춘 인력을 구축해야 합니다.
- 구현 비용이 높음
높은 구현 비용은 글로벌 AI Store Manager Tool 시장에 상당한 제약이 될 수 있습니다. AI 기반 솔루션은 소매 운영을 혁신하고 수익성을 개선할 수 있는 엄청난 잠재력을 제공하지만 구현에 필요한 초기 투자는 상당할 수 있습니다. 여기에는 소프트웨어 라이선싱, 하드웨어 인프라, 사용자 정의, 기존 시스템과의 통합 및 직원 교육과 관련된 비용이 포함됩니다. 예산이 제한된 중소 규모 소매업체의 경우 AI Store Manager Tools를 도입하는 데 따른 사전 비용이 진입 장벽이 되어 도입률과 시장 성장이 느려질 수 있습니다. 또한 지속적인 유지 관리 및 지원 비용은 예산에 더 큰 부담을 줄 수 있으며, 특히 마진이 낮은 소매업체의 경우 더욱 그렇습니다. 결론적으로 AI Store Manager Tools의 장기적 이점은 매력적이지만, 높은 사전 비용으로 인해 일부 소매업체는 이러한 솔루션에 투자하지 못하고 시장 침투와 성장이 제한될 수 있습니다.
이 시장 보고서는 최근의 새로운 개발, 무역 규정, 수출입 분석, 생산 분석, 가치 사슬 최적화, 시장 점유율, 국내 및 지역 시장 참여자의 영향, 새로운 수익 창출처, 시장 규정의 변화, 전략적 시장 성장 분석, 시장 규모, 범주 시장 성장, 응용 분야 틈새 시장 및 지배력, 제품 승인, 제품 출시, 지리적 확장, 시장의 기술 혁신에 대한 분석 기회를 제공합니다. 가변 주파수 드라이브 시장에 대한 자세한 정보를 얻으려면 Data Bridge Market Research for an Analyst Brief에 문의하세요. 저희 팀은 시장 성장을 달성하기 위한 정보에 입각한 시장 결정을 내리는 데 도움을 드립니다.
최근 개발
- 2023년 1월, Google Cloud는 고객의 온라인 쇼핑 경험을 개선하고 리테일러가 운영을 최적화하도록 돕는 것을 목표로 하는 4개의 새롭고 업데이트된 AI 도구를 출시했습니다. 이러한 도구는 보다 원활한 탐색과 개인화된 추천을 제공하도록 설계되어 리테일 부문의 효율성과 고객 만족도를 개선합니다.
- 2022년 9월, SymphonyAI는 Microsoft와 협력하여 Category Manager 및 Demand Planner Copilot 시스템을 포함하여 Microsoft Azure OpenAI 서비스를 활용한 소매 AI 소프트웨어 애플리케이션을 출시하여 소매업체와 CPG가 데이터 기반 의사 결정을 빠르고 정확하게 내릴 수 있도록 지원했습니다.
AI Store Manager 도구 시장 범위
시장은 솔루션, 애플리케이션, 기업 규모, 최종 사용자를 기준으로 세분화됩니다. 이러한 세그먼트 간의 성장은 산업의 빈약한 성장 세그먼트를 분석하고 사용자에게 핵심 시장 애플리케이션을 식별하기 위한 전략적 결정을 내리는 데 도움이 되는 귀중한 시장 개요와 시장 통찰력을 제공하는 데 도움이 됩니다.
해결책
- AI 매장 관리자 소프트웨어
- 클라우드 기반
- 온프레미스
- 서비스
- 디자인 및 구현
- 기술 컨설팅
- 지원 서비스
애플리케이션
- 재고 관리
- POS 시스템
- 직원 스케줄링
- 작업 관리
- 기타
기업 규모
- 소규모 사무실(직원 1~9명)
- 소규모 기업(직원 10~99명)
- 중견기업(직원 100~499명)
- 대기업(직원 500~999명)
- 매우 큰 기업(직원 1,000명 이상)
최종 사용자
- 슈퍼마켓
- 전문 소매점
- 식료품점
- 소매 약국
- 기타
AI Store Manager 도구 시장 지역 분석/통찰력
위에 언급된 대로 지역, 솔루션, 애플리케이션, 기업 규모 및 최종 사용자별로 시장을 분석하고, 시장 규모에 대한 통찰력과 추세를 제공합니다.
시장 보고서에서 다루는 국가는 미국, 캐나다, 멕시코, 브라질, 아르헨티나, 남미 기타 지역, 독일, 이탈리아, 영국, 프랑스, 스페인, 네덜란드, 벨기에, 스위스, 터키, 러시아, 유럽 기타 지역, 일본, 중국, 인도, 한국, 호주, 싱가포르, 말레이시아, 태국, 인도네시아, 필리핀, 아시아 태평양 기타 지역, 사우디 아라비아, UAE, 남아프리카 공화국, 이집트, 이스라엘, 그리고 중동 및 아프리카 기타 지역입니다.
북미는 몇 가지 주요 요인으로 인해 시장을 지배할 것으로 예상됩니다. 이 지역은 높은 수준의 기술 도입을 갖춘 강력한 소매 부문을 자랑하며, AI 기반 솔루션을 구현하기 위한 비옥한 토양을 조성합니다. 또한 북미는 주요 기술 회사와 AI 혁신가의 본거지로, 최첨단 AI Store Manager Tools를 개발하고 배포하기에 유리한 환경을 조성합니다. 또한 이 지역은 운영 효율성과 고객 경험에 엄격하게 중점을 두고 있어 고급 소매 관리 솔루션에 대한 수요가 증가하여 북미가 AI Store Manager Tools 도입과 성장을 위한 주요 시장이 되었습니다.
아시아 태평양 지역은 여러 요인으로 인해 시장에서 가장 빠르게 성장하는 지역입니다. 중국, 인도, 일본과 같은 국가에서 급속한 경제 성장, 도시화, 확장되는 소매 부문은 고급 소매 관리 솔루션에 대한 급성장하는 시장을 만들어냅니다. 또한 디지털 기술의 채택 증가와 개인화된 쇼핑 경험에 대한 소비자 기대치 상승으로 인해 이 지역에서 AI 기반 도구에 대한 수요가 증가하고 있습니다.
보고서의 지역 섹션은 또한 현재 및 미래 시장 추세에 영향을 미치는 국내 시장의 개별 시장 영향 요인과 규제 변화를 제공합니다. 하류 및 상류 가치 사슬 분석, 기술 추세, 포터의 5가지 힘 분석, 사례 연구와 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 몇 가지 포인터입니다. 또한 글로벌 브랜드의 존재 및 가용성과 지역 및 국내 브랜드의 대규모 또는 희소한 경쟁으로 인해 직면한 과제, 국내 관세의 영향 및 무역 경로가 지역 데이터의 예측 분석을 제공하는 동안 고려됩니다.
반도체 인프라 성장 설치 기반 및 신기술 침투
이 시장은 또한 자본 장비에 대한 의료 지출의 모든 지역적 성장, 시장을 위한 다양한 종류의 제품의 설치 기반, 라이프라인 곡선을 사용하는 기술의 영향, 배터리 규제 시나리오의 변화 및 가변 주파수 드라이브 시장에 미치는 영향에 대한 자세한 시장 분석을 제공합니다. 이 데이터는 2020-2030년의 과거 기간에 대해 제공됩니다.
경쟁 환경 및 AI Store Manager 도구 시장 점유율 분석
시장 경쟁 구도는 경쟁자에 대한 세부 정보를 제공합니다. 포함된 세부 정보는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 현장 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭과 범위, 애플리케이션 우세입니다. 위에 제공된 데이터 포인트는 시장과 관련된 회사의 초점에만 관련이 있습니다.
시장에서 활동하는 주요 기업은 다음과 같습니다.
- RetailAI 솔루션(미국)
- StoreGenie Technologies(캐나다)
- ShopMind AI(미국)
- OmniRetail AI(영국)
- StoreIQ 솔루션(호주)
- IntelliStore Solutions(독일)
- AI 리테일 매니저(프랑스)
- StoreSense AI(싱가포르)
- SmartStore Solutions(네덜란드)
- AI-StoreTech(일본)
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.