Forscher an der CU Boulder haben einen großen Schritt nach vorne gemacht, indem sie moderne Computersimulationen mit künstlicher Intelligenz kombiniert haben, um Fehler in der Elektronik, wie zum Beispiel Transistorausfälle in Mobiltelefonen, vorherzusagen und zu erkennen.
Diese Forschung wurde von Sanghamitra Neogi geleitet, einem Luft- und Raumfahrtingenieur und Physiker, und erschien in der Zeitschrift npj Computational Materials. Neogi und andere Forscher kartierten die Physik kleiner Bausteine aus Atomen und nutzten dann maschinelle Lerntechniken, um abzuschätzen, wie aus denselben Bausteinen größere Strukturen entstehen könnten. „Es ist ein bisschen so, als würde man anhand eines einzelnen Legosteins die Stärke einer viel größeren Burg vorhersagen. Wir versuchen, die Physik von Geräten mit Milliarden von Atomen zu verstehen“, sagte Neogi, Assistenzprofessor in der Abteilung für Luft- und Raumfahrttechnik, zu Ann und HJ Mead.
Dieses Vorhaben könnte sich als Segen für die Elektronik unseres Alltags erweisen, von Elektroautos und Mobiltelefonen bis hin zu neuen Quantencomputern. Eines Tages, sagt Neogi, könnten Ingenieure die Methoden des Teams nutzen, um Fehler im Design elektronischer Komponenten vorherzusehen. Das Projekt ist Teil von Neogis breiterem Fokus darauf, wie die Welt der sehr kleinen Dinge, wie die Bewegung von Atomen, Menschen helfen kann, neue und effizientere Computer zu bauen. „Anstatt jahrelang zu warten, um herauszufinden, warum Geräte versagen, können wir mit unseren Methoden im Voraus wissen, wie ein Gerät funktionieren wird, noch bevor wir es bauen“, sagte Neogi.